Pyrimidine Reactions. Part X^{1} The Methylation of **690**. Triaminopyrimidines; Conversion of the Resulting Imines into Pteridines

By D. J. BROWN and N. W. JACOBSEN

4,5,6- and 2,4,5-Triaminopyrimidine are shown to react with methyl iodide to give strong imino-bases (5,6-diamino-1,4-dihydro-4-imino-1-methylpyrimidine and 4,5-diamino-1,2-dihydro-2-imino-1-methylpyrimidine, respectively). The first of these imines reacts with α -dicarbonyl compounds to give pteridines (e.g., 3,4-dihydro-4-imino-3-methylpteridine) which are not otherwise obtainable. The second imine condenses with ethyl glyoxylate hemiacetal, with an accompanying rearrangement to give 7-hydroxy-2-methylaminopteridine. 5-Amino-1,4-dihydro-4-imino-1-methylpyrimidine also reacts with this hemiacetal but the 3,7-dihydro-3-methyl-7-oxopteridine, formed initially, decomposes in situ to yield 3-amino-2-formyl-5-hydroxypyrazine.

5-Amino-4,6-bismethylaminopyrimidine is shown to undergo an unusual extranuclear N-methylation with methyl iodide, giving 4,5,6-trismethylaminopyrimidine. 5-Formamido-4,6-bismethylaminopyrimidine however gives two purinium iodides of yet unconfirmed structure.

Ionisation constants and spectra of the compounds were determined and are discussed.

MANY pteridines are best made by condensing a 4,5-diaminopyrimidine with an α -dicarbonyl compound. We have now extended this synthesis to use aminoiminopyrimidines, particularly those hitherto unknown examples derived from triaminopyrimidines by methylation.

4,5-Diaminopyrimidine and methyl iodide have been shown² to yield 5-amino-1,4dihydro-4-imino-1-methylpyrimidine (I; R = NH, R' = H). This imine, treated in alkaline solution with ethyl glyoxylate hemiacetal, gave directly 3-amino-2-formyl-5-hydroxypyrazine (II; R = R' = H), which was clearly a degradation product of 3,7-dihydro-3-methyl-7-oxopteridine initially formed in the condensation. This imine, moreover, did not condense satisfactorily with either glyoxal or diacetyl.

4,5,6-Triaminopyrimidine (p K_a 5.78³) reacted with methyl iodide to give 5,6-diamino-1,4-dihydro-4-imino-1-methylpyrimidine (I; R = NH, $R' = NH_2$), a strong base (pK_a

Part IX, D. J. Brown and J. M. Lyall, Austral. J. Chem., 1965, 18, in the press.
 D. J. Brown and N. W. Jacobsen, J., 1962, 3172.

³ S. F. Mason, J., 1954, 2071.

12.1) of unambiguous structure. With the above hemiacetal under mildly alkaline conditions, it furnished a pteridine $(pK_a 1.7)$. Of the seven possible pteridine products it was shown to be 4-amino-1,7-dihydro-1-methyl-7-oxopteridine (III; $R = NH_2$, R' = H) as follows. Four of the possible products could be formed directly: the pteridine (III; $R = NH_2$, R' = H), its 3-methyl isomer, the imine (IV; R = OH, R' = H), and its 1-methyl isomer. Dimroth rearrangement⁴ of the second and third of these could give, respectively, 7- and 6-hydroxy-4-methylaminopteridine, and similar rearrangement of the pyrimidine intermediate prior to condensation could eventually yield, in addition to the last two mentioned, 4-amino-7,8-dihydro-8-methyl-7-oxopteridine. All except the two of these, which have an N-1-methyl group, are eliminated by the alkaline degradation of the pteridine to 2-carbamoyl-5-hydroxy-3-methylaminopyrazine (II; $R = NH_2$, R' = Me) of known structure (see below). Since one of these, 1,4-dihydro-6-hydroxy-4-imino-1-methylpteridine, cannot exist in an amino-oxo-form, it would necessarily be a strong base and is thereby eliminated; the pteridine has therefore the structure (III; R = $NH_2, R' = H$).

The above pyrazine was synthesised by condensing 5,6-diamino-1,4-dihydro-1-methyl-4-oxopyrimidine⁵ (I; R = O, $R' = NH_2$) with ethyl glyoxalate hemiacetal in alkaline solution to give 1,4(1,7)-dihydro-7(4)-hydroxy-1-methyl-4(7)-oxopteridine (III; R =OH, R' = H), and then degrading the pteridine. The remote possibility that the hydroxyoxopteridine might be either 1,4-dihydro-6-hydroxy-1-methyl-4-oxopteridine or (4(7)hydroxy-7,8(4,8)-dihydro-8-methyl-7(4)-oxopteridine (formed by Dimroth rearrangement of the pyrimidine intermediate prior to condensation) was eliminted by the close similarity of the ultraviolet spectrum of the derived pyrazine anion to that of 5-amino-2-carbamoyl-3-methylaminopyrazine as neutral molecule.⁵ The pyrazine in question has therefore the structure (II; $R = NH_2$, R' = Me) based on the R. Norman Jones rule; ⁶ the pyrazines derived from the other postulated pteridines would certainly differ from it in their anionic spectra.

With ethyl pyruvate, the imine (I; R = NH, $R' = NH_2$) gave 4-amino-1,7-dihydro-1,6-dimethyl-7-oxopteridine (III; $R = NH_{2}$, R' = Me), a structural assignment based on analogy with the previous reaction and the spectral similarity of the two pteridines (see Table).

Although the same imine did not condense cleanly with glyoxal in alkali, it did so in ethanolic hydriodic acid to give 3,4-dihydro-4-imino-3-methylpteridine (IV; R = R' = H), isomeric with the 1-methyl derivative obtained by direct methylation of 4-aminopteridine.⁷ In alkali this iminopteridine was not degraded to a pyrazine, but rapidly $(t_{\frac{1}{2}} < 1 \text{ min.})$ at pH 14.0 and 20°) underwent Dimroth rearrangement ⁴ to the known ⁷ 4-methylaminopteridine. The similarly formed homologue, 3,4-dihydro-4-imino-3,6,7-trimethylpteridine (IV; R = R' = Me), was identified by analysis, its spectrum, and its difference from the known ⁷ 1,6,7-trimethyl isomer.

Unlike 4,5,6-triaminopyrimidine, 5-amino-4,6-bismethylaminopyrimidine 7 (V; R = NH_2 , R' = NHMe) reacted with methyl iodide to give 4,5,6-trismethylaminopyrimidine (V; R = R' = NHMe), a relatively weak base of $pK_a 6.0$. Excluding examples in which a Dimroth rearrangement had occurred (e.g., during the methylation of 4,6-diamino-5-nitropyrimidine 7) this appears to be the first reported methylation of a 2- or 4-aminopyrimidine not yielding a strong imino- or quaternary base, and suggests that steric factors may be involved. This is independently supported by the failure of 5-bromo-2-dimethylamino-4-methylaminopyrimidine and related compounds to undergo methylation.⁸ The product was identified as follows: methylation on N-1 or N-3 was excluded by the ionisation constant and by the n.m.r. spectrum which showed symmetry in the molecule by the

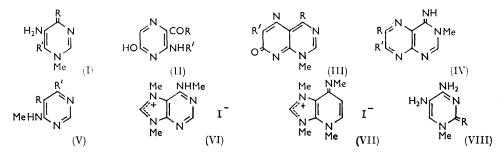
 ⁴ D. J. Brown and J. S. Harper, J., 1963, 1276.
 ⁵ D. J. Brown and N. W. Jacobsen, J., 1965, 1175.
 ⁶ R. N. Jones, J. Amer. Chem. Soc., 1945, 67, 2127.
 ⁷ D. J. Brown and N. W. Jacobsen, J., 1960, 1978.
 ⁸ D. J. Brown and T. Teitei, J., 1965, 755.

equivalence of the methyl proton signals from the 4- and 6-methylamino-groups ($\tau = 7.00$). There remained but three possible structures for the methylated pyrimidine; one of these, 5-amino-2-methyl-4,6-bismethylaminopyrimidine (p K_a 6.92), was excluded by its preparation from 4,6-dichloro-2-methyl-5-nitropyrimidine^{9,10} by full methylamination to 2-methyl-4,6-bismethylamino-5-nitropyrimidine and subsequent hydrogenation of the nitro-group. The second possibility, 5-amino-4-dimethylamino-6-methylaminopyrimidine ¹¹ (V; $R = NH_2$, $R' = NMe_2$) of pK_a 5.35, was also made unambiguously, from 4-chloro-6-methylamino-5-nitropyrimidine ¹² (V; $R = NO_2$, R' = Cl) by dimethylamination to (V; $R = NO_2$, $R' = NMe_2$) followed by reduction. Thus, by elimination, the methylation product was 4,5,6-trismethylaminopyrimidine. Our first attempt at its unambiguous synthesis, by formylating the triamine (V; $R = NH_2$, R' = NHMe) to the formamidopyrimidine (V; R = NHCHO, R' = NHMe) and subsequent reduction

Compound	p <i>K</i> a *	$\lambda_{\rm max.} ({\rm m}\mu)$	logε†	pН
Pteridine derivatives 4-Amino-1,7-dihydro-1,6-di-		231, 248, 251, 326,	4·28, 4·30, 4·29, 4·15,	5.0
methyl-7-oxo- cation	1.97 ± 0.02	336, 350 219, 242, 248, 290, 317, 325, 335	$\begin{array}{c} 4 \cdot 21, \ 4 \cdot 08 \\ 4 \cdot 09, \ 4 \cdot 21, \ 4 \cdot 15, \ 3 \cdot 86, \\ 4 \cdot 06, \ 4 \cdot 10, \ 4 \cdot 06 \end{array}$	-0.50
anion 4-Amino-1,7-dihydro-1-	$13{\cdot}82\pm0{\cdot}05$	231, 252, 257, 329,	4·27, 4·30, 4·29, 4·08,	7.0
methyl-7-oxo- cation	$1.70~\pm~0.04$	338, 351 220, 242, 251, 289; 316, 326, 338	$4 \cdot 13, 4 \cdot 00$ $4 \cdot 17, 4 \cdot 19, 4 \cdot 04, 3 \cdot 73,$ $3 \cdot 98, 4 \cdot 08, 4 \cdot 05$	-0.2
anion 1,4(1,7)-Dihydro-7(4)-hydr-	$13{\cdot}24\pm0{\cdot}04$	230, 239, 295, 325	4·28, 4·25, 3·88, 3·97	1.3
oxy-l-methyl-4(7)oxo- anion	$3.54 \pm 0.03(1.01) \ddagger$	226, 244, <i>250</i> , 280, <i>324</i> , 333, 346	4.35, 4.30, 4.25, 3.56, 4.05, 4.11, 3.98	5.7
3,4-Dihydro-4-imino-3-		0,01,000,010	100, 111, 000	14∙0 §
methyl- cation 3,4-Dihydro-4-imino-3,6,7- trimethyl-	9.5 **	236, <i>311</i> , 320, <i>330</i>	4·03, 3·78, 3·79, 3·62	7∙0 14∙0 §
cation 7-Hydroxy-2-methylamino- cation anion 5,6,7,8-Tetrahydro-5,8-di- methyl-4-methylamino- 6,7-dioxo-	$\begin{array}{c} 10.5 \mbox{ ** } \\ 2.08 \pm 0.03 \\ 7.59 \pm 0.02 \end{array}$	$\begin{array}{c} 237,\ 313,\ 318,\ 340\\ 215,\ 238,\ 294,\ 355\\ 228,\ 264,\ 286,\ 336\\ 230,\ 278,\ 351,\ 359\\ 214,\ 229,\ 245,\ 310,\\ 326 \end{array}$	4.12, 3.92, 3.94, 3.55 4.33, 4.05, 3.71, 4.21 4.16, 3.86, 3.97, 3.89 4.58, 3.83, 4.18, 4.15 4.11, 4.26, 4.10, 3.91, 3.93	$7.0 \\ 5.0 \\ -0.2 \\ 10.3 \\ 6.4$
cation	1.53 ± 0.05	235, 318	4·22, 4 ·11	-1.0
Purine derivatives 1,6-(or 3,6)-Dihydro-1,7,9(or 3,7,9)-trimethyl-6- methylimino-				14∙0 §
cation 7,9-Dimethyl-6-methyl-	12 ††	213, 287	4 ·09, 4 ·18	7∙0 14∙0 §
amino- cation 2-Methylamino- cation 9-Methyl-6-methylamino- cation 9-Methyl-6-methylamino-2- methylthio-	$\begin{array}{c} 11 \dagger \dagger \\ 4 \cdot 01 \pm 0 \cdot 02 (0 \cdot 005) \ddagger \\ 10 \cdot 32 \pm 0 \cdot 06 \\ 4 \cdot 12 \pm 0 \cdot 03 \end{array}$	226, 272, 316 209, 267 209, 264, <i>271</i> 214, 241, 281	$\begin{array}{c} 4 \cdot 10, \ 4 \cdot 15 \\ 4 \cdot 42, \ 3 \cdot 88, \ 3 \cdot 74 \\ 4 \cdot 55, \ 3 \cdot 81, \ 3 \cdot 57 \\ 4 \cdot 37, \ 3 \cdot 48, \ 3 \cdot 72 \\ 4 \cdot 27, \ 4 \cdot 20 \\ 4 \cdot 25, \ 4 \cdot 23, \ 4 \cdot 17 \\ 4 \cdot 12, \ 4 \cdot 32, \ 4 \cdot 19 \end{array}$	7.0 7.0 1.8 12.5 6.5 1.9 5.5
cation	3.02 ± 0.04	211, 253, 274, 282	4·21, 4·11, 4·15, 4·14	0.8

⁹ J. Baddiley and A. Topham, J., 1944, 678.
¹⁰ A. Albert, D. J. Brown, and H. C. S. Wood, J., 1954, 3832.
¹¹ D. Söll and W. Pfleiderer, *Chem. Ber.*, 1963, 96, 2977.
¹² D. J. Brown, J. Appl. Chem., 1957, 7, 109.

TABLE (Continued)


$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Compound	p <i>K</i> _a *	$\lambda_{\text{max.}}$ (m μ) †	logε†	pН
$\begin{array}{cccc} & \text{cation} & -1.34 \pm 0.05 & 284, 364 & 4.05, 4.10 & -3.55 \\ 2-\text{Carbamoyl-5-hydroxy-3-} & 227, 277, 362 & 3.54, 4.21, 4.19 & 5.3 \\ \text{methylamino-} & -0.92 \pm 0.05 & 266, 370 & 4.10, 4.10 & -3.1 \\ \text{anion} & -0.92 \pm 0.05 & 209, 288, 373 & 4.12, 4.06, 4.09 & -3.25 \\ \hline \\ 2-\text{Formyl-5-hydroxy-3-} & -1.05 \pm 0.05 & 209, 288, 373 & 4.12, 4.06, 4.09 & -3.25 \\ \hline \\ pyrimidine derivatives & 5-\text{Amino-4-dimethylamino-} & 220, 292 & 4.19, 4.04 & 7.5 \\ \text{G-methylamino-} & 5.35 \pm 0.02 & 235, 312 & 4.12, 4.14 & 3.0 \\ \text{Cation} & -1.05 \pm 0.05 & 235, 312 & 4.12, 4.14 & 3.0 \\ \text{A-mino-5-formamido-2-} & 5.35 \pm 0.02 & 235, 312 & 4.12, 4.14 & 3.0 \\ \text{methylamino-} & 220, 292 & 4.13, 3.78 & 9.0 \\ \text{methylamino-cation} & 6.12 \pm 0.01(0.01) \ddagger 216, 276 & 4.39, 4.53 & 3.0 \\ \text{222}, 280 & 4.33, 3.90 & 10.3 \\ \text{methylamino-cation} & 6.12 \pm 0.01(0.01) \ddagger 216, 276 & 4.39, 4.53 & 3.0 \\ 222, 280 & 4.33, 3.90 & 10.3 \\ \text{methylamino-cation} & 1.55 \pm 0.02 & 227, 251, 303, 352 & 4.30, 4.25, 3.91, 4.15 & -0.6 \\ \text{4.6-Bismethylamino-5-nitro-cation} & 1.55 \pm 0.02 & 227, 251, 303, 352 & 4.51, 3.89, 4.07 & 5.0 \\ \text{action} & 1.55 \pm 0.02 & 227, 251, 303, 352 & 4.53, 3.61, 3.87 & -0.2 \\ \text{4.6-Dihydroxy-2-methylthio-f-methyl-cation} & 13.66 \pm 0.05 & 226, 240, 297 & 4.24, 4.07, 3.72 & 7.0 \\ \text{5.6-Diamino-1,4-dihydro-4-imino-1-methyl-cation} & 2.00 \pm 0.04 & 235, 267, 337 & 4.00, 3.75, 3.96 & 7.0 \\ \text{4.6-Dihydroxy-2-methylthio-f-methyl-cation} & 2.00 \pm 0.03 & 2.53, 304, 363 & 4.27, 3.52, 3.87 & -0.2 \\ 5.6-Diamino-6-methyl-maino-6-methyl-amino-6-meth$	Pyrazine derivatives				
$\begin{array}{ccc} cation & -1.34 \pm 0.05 & 284, 364 & 4.05, 4.10 & -3.55 \\ 2-Carbamoyl-5-hydroxy-3- methylamino- cation & -0.92 \pm 0.05 & 266, 370 & 4.10, 4.10 & -3.1 \\ anion & -0.92 \pm 0.05 & 266, 370 & 4.10, 4.10 & -3.1 \\ r.48 \ddagger 1 & 211, 277, 355 & 4.28, 4.19, 4.12 & 9.7 \\ 2-Formyl-5-hydroxy-3- methylamino- \ddagger 1.05 \pm 0.05 & 209, 288, 373 & 4.12, 4.06, 4.09 & -3.25 \\ \hline Pyrimidine derivatives & 5-Amino-4-dimethylamino- cation & 5.35 \pm 0.02 & 235, 312 & 4.12, 4.14 & 3.0 \\ -Amino-5-formamido-2- methylamino- cation & 5.35 \pm 0.02 & 235, 312 & 4.12, 4.14 & 3.0 \\ -Amino-5-formamido-2- methylamino- cation & 6.92 \pm 0.01(0.01) \ddagger 216, 276 & 4.39, 4.53 & 3.00 & 10.3 \\ methylamino-cation & 6.92 \pm 0.03(0.01) \ddagger 225, 285 & 4.29, 4.08 & 4.55 \\ -A.Bismethylamino-2- methyl-4.6-bismethylamino-5-nitro- cation & 1.55 \pm 0.02 & 227, 251, 303, 352 & 4.30, 4.25, 3.91, 4.15 & -0.6 \\ 4.6-Bismethylamino-2- methylthio-5-nitro- cation & 1.55 \pm 0.02 & 227, 251, 303, 352 & 4.30, 4.25, 3.91, 4.15 & -0.6 \\ 4.6-Bismethylamino-2- methylthio-5-nitro- cation & 1.55 \pm 0.02 & 227, 251, 303, 352 & 4.30, 4.25, 3.91, 4.15 & -0.6 \\ 4.6-Dimino-1-methyl-2 & 2.57 \pm 0.03 & 242, 301, 352 & 4.30, 4.25, 3.91, 4.15 & -0.6 \\ 4.6-Dimino-1-methyl-2 & 2.57 \pm 0.02 & 227, 251, 303, 352 & 4.30, 4.25, 3.91, 4.15 & -0.6 \\ 4.6-Dimino-1-methyl-2 & 2.57 \pm 0.02 & 226, 240, 297 & 4.24, 4.07, 3.72 & 7.0 \\ 4.5-Diamino-1,2-dihydro-2- mino-2 & 242, 301, 352 & 4.33, 3.40 & 7.4 \\ -3.6-Dimothydroxy-2-methylthio-amion & 217, 246, 328 & 7.4 \\ -4.6-Dihydroxy-2-methylthio-amion & 216, 247, 257 & 4.25, 3.87 & 14.3 \\ -3.09 \pm 0.04 & 235, 267, 337 & 4.00, 3.75, 3.96 & 7.0 \\ -4.01methylamino-6-methyl-amino-6-methyl-amino-6-methyl-amino-6-methyl-amino-6-methyl-amino-6-methyl-amino-6-methyl-amino-6-methyl-2 & 228, 275 & 4.62, 4.00 & 7.0 \\ -3.00 \pm 0.04 & 2.55, 267, 337 & 4.00, 3.75, 3.96 & 7.0 \\ -2.90 \pm 0.03 & 253, 304, 363 & 4.37, 3.52, 3.75 & -0.2 \\ -5.00 \pm 0.04 & 2.25, 245, 281 & 4.29, 4.43, 4.11 & 1.9 \\ -2.Methyl_4, 6-bismethyl-amino-6-methyl-amino-6-methyl-amino-6-methyl-amino-6-methyl-amino-6-methyl-a$	3-Amino-2-formyl-5-hydr-				
$\begin{array}{cccc} 22 - 6 \ 276 \ 277, \ 362 \ 3 \cdot 54, \ 4 \cdot 21, \ 4 \cdot 19 \ 5 \cdot 3 \ and \ anion \ 227, \ 277, \ 362 \ 3 \cdot 54, \ 4 \cdot 21, \ 4 \cdot 19 \ 5 \cdot 3 \ anion \ 227, \ 277, \ 362 \ 3 \cdot 54, \ 4 \cdot 21, \ 4 \cdot 19 \ 5 \cdot 3 \ anion \ 216, \ 276 \ 27$					
$\begin{array}{cccc} \mbox{ation} & -0.92 \pm 0.05 \\ \mbox{cation} & 7.48 \ddagger \ddagger & 211, 277, 355 & 4.10, 4.10 & -3.1 \\ \mbox{ation} & 7.48 \ddagger \ddagger & 211, 277, 355 & 4.28, 4.19, 4.12 & 9.7 \\ \mbox{2-Formyl-5-hydroxy-3-} \\ \mbox{methylamino-} & 1.05 \pm 0.05 & 209, 288, 373 & 4.12, 4.06, 4.09 & -3.25 \\ \mbox{Pyrimidine derivatives} & 5.4mino-4.dimethylamino- & 226, 292 & 4.19, 4.04 & 7.5 \\ \mbox{-Amino-5-dimethylamino-} & 5.35 \pm 0.02 & 235, 312 & 4.12, 4.14 & 3.0 \\ \mbox{4-Amino-5-formamido-2-} \\ \mbox{methylamino-} & 5.35 \pm 0.02 & 235, 312 & 4.12, 4.14 & 3.0 \\ \mbox{4-Amino-5-formamido-2-} \\ \mbox{methylamino-} & 6.12 \pm 0.01(0.01) \ddagger & 216, 276 & 4.39, 4.53 & 3.0 \\ \mbox{5-Amino-2-methyl-4,6-bis-} \\ \mbox{methylamino-} & 6.92 \pm 0.03(0.01) \ddagger & 225, 285 & 4.29, 4.08 & 4.5 \\ \mbox{4.6-Bismethylamino-2-} \\ \mbox{methylamino-3-nitro-} \\ \mbox{cation} & 1.55 \pm 0.02 & 227, 251, 303, 352 & 4.30, 4.25, 3.91, 4.15 & -0.6 \\ \mbox{4.6-Bismethylamino-5-nitro-} \\ \mbox{cation} & 1.55 \pm 0.02 & 227, 251, 303, 352 & 4.30, 4.25, 3.91, 4.15 & -0.6 \\ \mbox{4.6-Dismino-1,2-dihydro-2-} \\ \mbox{imino-1-methyl-} \\ \mbox{cation} & 1.55 \pm 0.02 & 226, 240, 297 & 4.24, 4.07, 3.72 & 7.0 \\ \mbox{5.6-Diamino-1,2-dihydro-2-} \\ \mbox{imino-1-methyl-} \\ \mbox{cation} & 1.2 \cdot 11 \pm 0.05 & 219, 287 & 4.37, 3.98 & 7.0 \\ \mbox{4.6-Dihydroxy-2-methylthio-} \\ \mbox{5.6-Dimmino-5-nitro-} \\ \mbox{cation} & 2.90 \pm 0.04 & 207, 227, 260, 270 & 4.35, 4.14, 3.92, 3.88 & 7.4 \\ \mbox{4.6-Dihydroxy-2-methylthio-} \\ \mbox{5.Formamido-4,6-bismethyl-} \\ \mbox{anion} & 2.90 \pm 0.02 & 228, 272 & 4.43, 4.14 & 2.6 \\ \mbox{5-Formamido-4,6-bismethyl-} \\ \mbox{anion} & 2.90 \pm 0.02 & 228, 272 & 4.43, 4.14 & 2.6 \\ \mbox{5-Formamido-4,6-bismethyl-} \\ \mbox{anion} & 2.90 \pm 0.02 & 228, 272 & 4.43, 4.14 & 2.6 \\ \mbox{5-Formamido-4,6-bismethyl-} \\ \mbox{anion} & 2.44, 299, 350 & 4.36, 3.65, 3.95 & -0.2 \\ \mbox{4.17} \pm 0.01 & 225, 245, 281 & 4.29, 4.43, 4.11 & 1.9 \\ \mbox{4.17} \pm 0.01 & 225, 245, 281 & 4.29, 4.43, 4.11 & 1.9 \\ \mbox{4.17} \pm 0.02 & 228, 275 & 4.62, 4.00 & 7.0 \\ \mbox{4.17} \pm 0.02 & 228, $		-1.34 ± 0.05			
$\begin{array}{ccc} \operatorname{cation} & -0.92 \pm 0.05 & 266, 370 & 4.10, 4.10 & -3.1 \\ \operatorname{anion} & 7.48 \ddagger 1 & 211, 277, 355 & 4.28, 4.19, 4.12 & 9.7 \\ 2-Formyl-5-hydroxy-3- \\ \operatorname{methylamino-} \ddagger & 211, 277, 355 & 4.28, 4.19, 4.12 & 9.7 \\ \operatorname{cation} & -1.05 \pm 0.05 & 209, 288, 373 & 4.12, 4.06, 4.09 & -3.25 \\ \hline Pyrimidine derivatives \\ 5-Amino-4-dimethylamino- \\ 6-methylamino- \\ \operatorname{cation} & 5.35 \pm 0.02 & 235, 312 & 4.12, 4.14 & 3.0 \\ -4Amino-5-formanido-2- & 232, 295 & 4.13, 3.78 & 9.0 \\ \operatorname{methylamino-} & 6.12 \pm 0.01(0.01) \ddagger 216, 276 & 4.39, 4.53 & 3.0 \\ 5-Amino-2-methyl-4,6-bis- \\ \operatorname{methylamino-} & 6.92 \pm 0.03(0.01) \ddagger 225, 285 & 4.29, 4.08 & 4.5 \\ 4.6-Bismethylamino-2- \\ \operatorname{cation} & 6.92 \pm 0.03(0.01) \ddagger 225, 285 & 4.29, 4.08 & 4.5 \\ 4.6-Bismethylamino-5-nitro- \\ \operatorname{cation} & 1.55 \pm 0.02 & 227, 251, 303, 352 & 4.30, 4.25, 3.91, 4.15 & -0.6 \\ 4.6-Bismethylamino-5-nitro- \\ \operatorname{cation} & 1.55 \pm 0.02 & 227, 251, 303, 352 & 4.30, 4.25, 3.91, 4.15 & -0.6 \\ 2.57 \pm 0.03 & 242, 301, 352 & 4.36, 3.73, 4.20 & 6.0 \\ 2.57 \pm 0.03 & 242, 301, 352 & 4.36, 3.73, 4.20 & 6.0 \\ 2.56 - 10mino-1, 2-dihydro-2- \\ \operatorname{imino-1-methyl-} & 229, 296 & 4.22, 3.63 & \P \\ \operatorname{cation} & 1.2\cdot11 \pm 0.05 & 219, 287 & 4.37, 3.98 & 7.0 \\ 3.60 \pm 0.04 & 207, 221, 260, 270 & 4.35, 4.47, 3.92, 3.87 & 14.3 \\ \operatorname{imino-1-methyl-} & 200 \pm 0.04 & 235, 267, 337 & 4.00, 3.75 & 3.96 & 7.0 \\ 4.0 Dinethylamino-6-methyl- \\ \operatorname{cation} & 2\cdot00 \pm 0.04 & 235, 267, 337 & 4.00, 3.75 & 3.96 & 7.0 \\ 2.90 \pm 0.03 & 253, 304, 363 & 4.37, 3.52, 3.75 & -0.2 \\ 2.90 \pm 0.03 & 253, 304, 363 & 4.37, 3.52, 3.75 & -0.2 \\ 2.90 \pm 0.03 & 253, 304, 363 & 4.37, 3.52, 3.75 & -0.2 \\ 2.90 \pm 0.03 & 253, 304, 363 & 4.37, 3.52, 3.75 & -0.2 \\ 2.90 \pm 0.03 & 253, 304, 363 & 4.37, 3.52, 3.75 & -0.2 \\ 2.90 \pm 0.03 & 253, 304, 363 & 4.37, 3.52, 3.75 & -0.2 \\ 2.90 \pm 0.03 & 253, 304, 363 & 4.37, 3.52, 3.75 & -0.2 \\ 2.90 \pm 0.03 & 253, 304, 363 & 4.37, 3.52, 3.75 & -0.2 \\ 2.90 \pm 0.03 & 253, 304, 363 & 4.37, 3.52, 3.75 & -0.2 \\ 2.90 \pm 0.03 & 253, 304, 363 & 4.37, 3.52, 3.75 & -0.2 \\ 2.90 \pm 0.03 & 253, 304, 363 & 4.37, 3.52, 3.75 & -0.2 \\ 3.670$			227, 277, 362	3.54, 4.21, 4.19	$5 \cdot 3$
$ \begin{array}{cccc} anion & 7.48 $ \frac{1}{11} & 211, 277, 355 & 4.28, 4.19, 4.12 & 9.7 \\ 2.Formyl-5-hydroxy-3-methylamino- $ \frac{1}{12} & -1.05 \pm 0.05 & 209, 288, 373 & 4.12, 4.06, 4.09 & -3.25 \\ \hline Pyrimidine derivatives & 5.4mino-4-dimethylamino- $ 226, 292 & 4.19, 4.04 & 7.5 \\ 6-methylamino- & 232, 295 & 4.13, 3.78 & 9.0 \\ methylamino- & 5.35 \pm 0.02 & 235, 312 & 4.12, 4.14 & 3.0 \\ 4-Amino-5-formamido-2-methyl-4,6-bis-methylamino- & 6.12 \pm 0.01(0.01) \ddagger 216, 276 & 4.39, 4.53 & 3.0 \\ 5-Amino-2-methyl-4,6-bis-methylamino-2-methyl-4,6-bis-methylamino-2-methyl-4,6-bis-methylamino-2-methyl-4,6-bis-methylamino-2-methyl-4,6-bis-methylamino-2-methyl-4,6-bis-methylamino-2-methyl-4,6-bis-methylamino-2-methyl-4,6-bis-methylamino-2-methyl-4,6-bis-methylamino-2-methyl-4,6-bis-methylamino-2-methyl-4,6-bis-methylamino-2-methyl-2 & 229, 286 & 4.29, 4.08 & 4.5 \\ 4.6-Bismethylamino-2-methyl-2-dihydro-2-imino-1,2-dihydro-2-imino-2-methyl-2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,$		0.09 1 0.05	966 970	4.10 4.10	9.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c cccc} methylamino- \ddagger i \\ cation & -1\cdot05 \pm 0\cdot05 & 209, 288, 373 & 4\cdot12, 4\cdot06, 4\cdot09 & -3\cdot25 \\ \hline Pyrimidine derivatives \\ 5-Amino-4-dimethylamino- \\ 6-methylamino- \\ cation & 5\cdot35 \pm 0\cdot02 & 235, 312 & 4\cdot12, 4\cdot14 & 3\cdot0 \\ -4-mino-5-formamido-2- \\ methylamino- \\ cation & 6\cdot12 \pm 0\cdot01(0\cdot01) \ddagger 216, 276 & 4\cdot39, 4\cdot53 & 3\cdot0 \\ 5-Amino-2-methyl-4,6-bis- \\ methylamino- \\ cation & 6\cdot92 \pm 0\cdot03(0\cdot01) \ddagger 225, 285 & 4\cdot29, 4\cdot08 & 4\cdot5 \\ 4.6-Bismethylamino-2- \\ methylthio-5-nitro- \\ cation & 1\cdot55 \pm 0\cdot02 & 227, 251, 303, 352 & 4\cdot30, 4\cdot25, 3\cdot91, 4\cdot15 & -0\cdot6 \\ 4.6-Bismethylamino-5-nitro- \\ cation & 1\cdot55 \pm 0\cdot02 & 227, 251, 303, 352 & 4\cdot30, 4\cdot25, 3\cdot91, 4\cdot15 & -0\cdot6 \\ 4.6-Bismethylamino-2- \\ minino-1-methyl- \\ cation & 1\cdot65 \pm 0\cdot02 & 227, 251, 303, 352 & 4\cdot30, 4\cdot25, 3\cdot91, 4\cdot15 & -0\cdot6 \\ 4.6-Dismino-1,2-dihydro-2- \\ imino-1-methyl- \\ cation & 1\cdot66 \pm 0\cdot05 & 226, 240, 297 & 4\cdot24, 4\cdot07, 3\cdot72 & 7\cdot0 \\ 5.6-Diamino-1,4-dihydro-4- \\ mino-1-methyl- \\ cation & 12\cdot11 \pm 0\cdot05 & 219, 287 & 4\cdot37, 3\cdot98 & 7\cdot0 \\ 4.6-Dihydroxy-2-methylthio- \\ 5-10imo-5-nitro- \\ cation & 2\cdot00 \pm 0\cdot04 & 207, 221, 260, 270 & 4\cdot35, 4\cdot14, 3\cdot92, 3\cdot88 & 7\cdot0 \\ 4.6-Dihydroxy-2-methylthio- \\ 5-00 \pm 0\cdot04 & 207, 221, 260, 270 & 4\cdot35, 4\cdot14, 3\cdot92, 3\cdot88 & 7\cdot0 \\ 4.6-Dihydroxy-2-methylthio- \\ amino-5-nitro- \\ cation & 5\cdot00 \pm 0\cdot02 & 228, 272 & 4\cdot43, 4\cdot14 & 2\cdot6 \\ 5-Formamido-4,6-bismethyl- \\ amino-2-methyltho- \\ cation & 5\cdot00 \pm 0\cdot02 & 228, 272 & 4\cdot43, 4\cdot14 & 2\cdot6 \\ 5-Formamido-4,6-bismethyl- \\ amino-2-methyltho- \\ cation & 4\cdot17 \pm 0\cdot01 & 225, 245, 281 & 4\cdot29, 4\cdot43, 4\cdot11 & 1\cdot9 \\ 2-Methyl-4,6-bismethyl- \\ amino-5-nitro- \\ cation & 4\cdot17 \pm 0\cdot01 & 225, 245, 281 & 4\cdot29, 4\cdot43, 4\cdot11 & 1\cdot9 \\ 2-Methyl-4,6-bismethyl- \\ amino-5-nitro- \\ cation & 4\cdot17 \pm 0\cdot01 & 225, 245, 281 & 4\cdot29, 4\cdot43, 4\cdot11 & 1\cdot9 \\ 2-Methyl-4,6-bismethyl- \\ amino-5-nitro- \\ cation & 4\cdot17 \pm 0\cdot01 & 225, 245, 281 & 4\cdot29, 4\cdot43, 4\cdot11 & 1\cdot9 \\ 2-Methyl-4,6-bismethyl- \\ amino-5-nitro- \\ cation & 4\cdot17 \pm 0\cdot01 & 225, 245, 281 & 4\cdot29, 4\cdot43, 4\cdot11 & 1\cdot9 \\ 2-Methyl-4,6-bismethyl- \\ amino-5-nitro- \\ cation & 4\cdot17 \pm 0\cdot01 & 225, 244, 299, 350 & 4\cdot56, 3\cdot95 & $		1 10 11	211, 211, 000	1 20, 1 10, 1 12	
$\begin{array}{cccc} \text{cation} & -1\cdot05 \pm 0\cdot05 & 209, 288, 373 & 4\cdot12, 4\cdot06, 4\cdot09 & -3\cdot25 \\ \hline Pyrimidine derivatives \\ 5-Amino-4-dimethylamino- 6-methylamino- 6-methylamino- 6-methylamino- 2-methylthio-2-methylthio-2-methylthio-2-methylthio-2-methylthio-3-nitro- cation & 6\cdot92 \pm 0\cdot01(0\cdot01) \ddagger 216, 276 & 4\cdot39, 4\cdot53 & 3\cdot0 \\ 5-Amino-2-methyl-14, 6-bismethyl- 4-6-bismethylamino-2-methylthio-3-nitro- cation & 6\cdot92 \pm 0\cdot03(0\cdot01) \ddagger 222, 280 & 4\cdot33, 3\cdot90 & 10\cdot3 \\ 4.6-Dinydroxy-2-methylthio-4-imino-1-methyl- cation & 1\cdot55 \pm 0\cdot02 & 227, 251, 303, 352 & 4\cdot30, 4\cdot25, 3\cdot91, 4\cdot15 & -0.6 \\ 4.6-Dinydroxy-2-methylthio-3-nitro- cation & 1\cdot55 \pm 0\cdot02 & 227, 251, 303, 352 & 4\cdot38, 4\cdot07 & 5\cdot0 \\ 5.6-Diamino-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, $					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-1.05 ± 0.05	209, 288, 373	4.12, 4.06, 4.09	-3.25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{ccc} 6-methylamino-\\ cation \\ 4-Amino-5-formamido-2-\\ methylamino-\\ cation \\ 5-Amino-2-methyl-4, 6-bismethylamino-\\ cation \\ 6-12 \pm 0 \cdot 01(0 \cdot 01) \ddagger 216, 276 \\ 232, 280 \\ 4-33, 3-90 \\ 222, 280 \\ 4-33, 3-90 \\ 10 \cdot 3 \\ 10 \cdot 3 \\ 10 \cdot 10 \\ 10 \cdot$	2				
$\begin{array}{cccc} cation & 5\cdot35\pm0\cdot02 & 235, 312 & 4\cdot12, 4\cdot14 & 3\cdot0 \\ 4-Amino-5-formamido-2-methylamino-cation & 6\cdot12\pm0\cdot01(0\cdot01) \ddagger 232, 295 & 4\cdot13, 3\cdot78 & 9\cdot0 \\ methylamino-cation & 6\cdot12\pm0\cdot01(0\cdot01) \ddagger 216, 276 & 4\cdot39, 4\cdot53 & 3\cdot0 \\ 5-Amino-2-methyl-4,6-bismethyl-3-cation & 6\cdot92\pm0\cdot03(0\cdot01) \ddagger 225, 285 & 4\cdot29, 4\cdot08 & 4\cdot5 \\ 4,6-Bismethylamino-5-nitro-cation & 1\cdot55\pm0\cdot02 & 227, 251, 303, 352 & 4\cdot30, 4\cdot25, 3\cdot91, 4\cdot15 & -0\cdot6 \\ 4,6-Bismethylamino-5-nitro-cation & 1\cdot55\pm0\cdot02 & 227, 251, 303, 352 & 4\cdot30, 4\cdot25, 3\cdot91, 4\cdot15 & -0\cdot6 \\ 4,6-Bismethylamino-1-methyl-cation & 1\cdot55\pm0\cdot02 & 226, 240, 297 & 4\cdot34, 3\cdot61, 3\cdot87 & -0\cdot2 \\ 4,6-Diamino-1,2-dihydro-2-imino-1-methyl-cation & 1\cdot66\pm0\cdot05 & 226, 240, 297 & 4\cdot24, 4\cdot07, 3\cdot72 & 7\cdot0 \\ 5,6-Diamino-1,4-dihydro-4-imino-5-nitro-cation & 12\cdot11\pm0\cdot05 & 219, 287 & 4\cdot25, 3\cdot87 & 14\cdot3 \\ 4,6-Dihydroxy-2-methylthio-5-nitro-cation & 2\cdot00\pm0\cdot04 & 207, 221, 260, 270 & 4\cdot35, 4\cdot14, 3\cdot92, 3\cdot88 & 7\cdot4 \\ 4,6-Dihydroxy-2-methylthio-5-nitro-cation & 2\cdot00\pm0\cdot04 & 235, 267, 337 & 4\cdot00, 3\cdot75, 3\cdot96 & 7\cdot0 \\ 2\cdot50\pm0\cdot04 & 200\pm20\cdot04 & 235, 267, 337 & 4\cdot00, 3\cdot75, 3\cdot96 & 7\cdot0 \\ 2\cdot90\pm0\cdot03 & 253, 304, 363 & 4\cdot37, 3\cdot52, 3\cdot75 & -0\cdot2 \\ 5\cdotFormamido-4,6-bismethyl-amino-cation & 5\cdot00\pm0\cdot02 & 228, 272 & 4\cdot33, 4\cdot14 & 2\cdot6 \\ 5\cdot00\pm0\cdot02 & 228, 272 & 4\cdot33, 4\cdot14 & 2\cdot6 \\ 5\cdot00\pm0\cdot02 & 228, 272 & 4\cdot33, 4\cdot14 & 2\cdot6 \\ 5\cdot00\pm0\cdot02 & 228, 272 & 4\cdot33, 4\cdot14 & 2\cdot6 \\ 5\cdot00\pm0\cdot02 & 228, 272 & 4\cdot33, 4\cdot14 & 2\cdot6 \\ 5\cdot00\pm0\cdot02 & 228, 272 & 4\cdot33, 4\cdot14 & 2\cdot6 \\ 5\cdot00\pm0\cdot02 & 228, 272 & 4\cdot33, 4\cdot14 & 2\cdot6 \\ 5\cdot00\pm0\cdot02 & 228, 272 & 4\cdot33, 4\cdot14 & 2\cdot6 \\ 5\cdot00\pm0\cdot02 & 228, 272 & 4\cdot33, 4\cdot14 & 2\cdot6 \\ 5\cdot00\pm0\cdot02 & 228, 272 & 4\cdot33, 4\cdot14 & 2\cdot6 \\ 5\cdot00\pm0\cdot02 & 228, 272 & 4\cdot33, 4\cdot14 & 2\cdot6 \\ 5\cdot00\pm0\cdot02 & 228, 272 & 4\cdot33, 4\cdot14 & 2\cdot6 \\ 5\cdot00\pm0\cdot02 & 228, 272 & 4\cdot34, 4\cdot11 & 1\cdot9 \\ 2\cdot0.4tyl-4,6-bismethyl-amino-cation & 3\cdot43\pm0\cdot02 & 244, 299, 350 & 4\cdot36, 3\cdot65, 3\cdot95 & -0\cdot2 \\ 244, 299, 350 & 4\cdot36, 3\cdot98 & 8\cdot5 \\ 5\cdot00\pm0\cdot02 & 244, 299, 350 & 4\cdot36, 3\cdot98 & 8\cdot5 \\ 5\cdot00\pm0\cdot02 & 244, 299, 350 & 4\cdot36, 3\cdot98 & 8\cdot5 \\ 5\cdot00\pm0\cdot02 & 244, 299, 350 & 4\cdot36, 3\cdot98 & 8\cdot5 \\ 5\cdot00\pm0\cdot02 & 244, 299, 350 & 4\cdot36, 3\cdot98 & 8\cdot5 \\ 5\cdot00\pm0\cdot02 & 244, 299$			226, 292	4.19, 4.04	7.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5.95 1 0.09	995 919	4.19 4.14	9.0
$ \begin{array}{c} \mbox{methylamino-cation} & 6\cdot12\pm0\cdot01(0\cdot01)\pm216,\ 276 & 4\cdot39,\ 4\cdot53 & 3\cdot90 & 10\cdot3 \\ 222,\ 280 & 4\cdot33,\ 3\cdot90 & 10\cdot3 \\ 4\cdot6\cdotBismethylamino-2-methylthio-5-nitro-cation & 1\cdot55\pm0\cdot02 & 227,\ 251,\ 303,\ 352 & 4\cdot30,\ 4\cdot25,\ 3\cdot91,\ 4\cdot15 & -0\cdot6 \\ 4.6-Bismethylamino-5-nitro-cation & 1\cdot55\pm0\cdot02 & 227,\ 251,\ 303,\ 352 & 4\cdot30,\ 4\cdot25,\ 3\cdot91,\ 4\cdot15 & -0\cdot6 \\ 4.6-Bismethylamino-1,\ 2-chihydro-2-methylthio-2-mimo-1-methyl-cation & 1\cdot55\pm0\cdot02 & 227,\ 251,\ 303,\ 352 & 4\cdot35,\ 3\cdot61,\ 3\cdot87 & -0\cdot2 \\ 4.5-Diamino-1,\ 2-chihydro-2-methylthio-2-mimo-1-methyl-cation & 13\cdot66\pm0\cdot05 & 226,\ 240,\ 297 & 4\cdot24,\ 4\cdot07,\ 3\cdot72 & 7\cdot0 \\ 5.6-Diamino-1,\ 4-chihydro-4-mimo-2-methylthio-2-mimo-1-methyl-cation & 12\cdot11\pm0\cdot05 & 219,\ 287 & 4\cdot37,\ 3\cdot98 & 7\cdot0 \\ 4.6-Dihydroxy-2-methylthio-2-mitro-2-mimo-2-methylthio-2-mitro-2-mimo-2-methylthio-2-mitro-2-mimo-2-methylthio-2-mitro-2-mimo-2-methylthio-2-mitro-2-mimo-2-methylthio-2-mitro-2-mimo-2-methylthio-2-mitro-2-mimo-2-methylthio-2-mitro-2-mimo-2-methylthio-2-mitro-2-mimo-2-methylthio-2-mitro-2-mimo-2-methylthio-2-mitro-2-mimo-2-methylthio-2-mitro-2-mimo-2-methylthio-2-mitro-2-mimo-2-methylthio-2-mitro-2-mimo-2-methylthio-2-mitro-2-mimo-2-methylthio-2-mimo-2-methylthio-2-mimo-2-methylthio-2-mimo-2-methylthio-2-mimo-2-methylthio-2-mitro-2-mimo-2-methylthio-2-mimo-2-methylthio-2-mitro-2-mimo-2-methylthio-2-mimo-2-methylthio-2-mitro-2-mimo-2-methylthio-2-mitro-2-mimo-2-methylthio-2-mitro-2-mimo-2-methylthio-2-methylthio-2-methylthio-2-methylthio-2-methylthio-2-mitro-2-mimo-2-methylthio-2-mitro-2-mimo-2-methylthio-2-methy$		5 55 ± 0.02			
$\begin{array}{cccc} \operatorname{cation} & 6\cdot12\pm0\cdot01(0\cdot01) \ddagger 216, 276 & 4\cdot39, 4\cdot53 & 3\cdot0 \\ 5-\operatorname{Amino-2-methyl-4,6-bismethyl-amino-c} \\ \operatorname{cation} & 6\cdot92\pm0\cdot03(0\cdot01) \ddagger 222, 280 & 4\cdot33, 3\cdot90 & 10\cdot3 \\ \operatorname{methylamino-2-methyl-1mino-2-methyl-1mino-5-nitro-cation & 1\cdot55\pm0\cdot02 & 227, 251, 303, 352 & 4\cdot29, 4\cdot08 & 4\cdot5 \\ 4,6-\operatorname{Bismethylamino-5-nitro-cation} & 1\cdot55\pm0\cdot02 & 227, 251, 303, 352 & 4\cdot30, 4\cdot25, 3\cdot91, 4\cdot15 & -0\cdot6 \\ 4,6-\operatorname{Bismethylamino-5-nitro-cation} & 1\cdot55\pm0\cdot02 & 227, 251, 303, 352 & 4\cdot30, 4\cdot25, 3\cdot91, 4\cdot15 & -0\cdot6 \\ 4,6-\operatorname{Dismino-1,2-dihydro-2-imino-1-methyl-cation} & 13\cdot66\pm0\cdot05 & 226, 240, 297 & 4\cdot24, 4\cdot07, 3\cdot72 & 7\cdot0 \\ 5,6-\operatorname{Diamino-1,4-dihydro-4-imino-1-methyl-cation} & 13\cdot66\pm0\cdot05 & 226, 240, 297 & 4\cdot24, 4\cdot07, 3\cdot72 & 7\cdot0 \\ 5,6-\operatorname{Diamino-1,4-dihydro-4-imino-5-nitro-cation} & 12\cdot11\pm0\cdot05 & 219, 287 & 4\cdot37, 3\cdot98 & 7\cdot0 \\ 4,6-\operatorname{Dihydroxy-2-methylthio-5-nitro-cation} & 12\cdot11\pm0\cdot05 & 219, 287 & 4\cdot37, 3\cdot98 & 7\cdot0 \\ 4,6-\operatorname{Dihydroxy-2-methylthio-5-nitro-cation} & 2\cdot00\pm0\cdot04 & 207, 221, 260, 270 & 4\cdot35, 4\cdot14, 3\cdot92, 3\cdot88 & 7\cdot4 \\ 4,6-\operatorname{Dihydroxy-2-methylthio-5-nitro-cation} & 2\cdot00\pm0\cdot02 & 228, 276 & 4\cdot33 & 4\cdot10 & -0\cdot2 \\ 2\cdot00\pm0\cdot04 & 205, 244, 368 & 4\cdot41, 4\cdot10, 3\cdot94 & 5\cdot0 \\ 3\min0-5-nitro- & 2i0\pm0\cdot03 & 253, 304, 363 & 4\cdot37, 3\cdot52, 3\cdot75 & -0\cdot2 \\ 2\cdot90\pm0\cdot03 & 253, 304, 363 & 4\cdot37, 3\cdot52, 3\cdot75 & -0\cdot2 \\ 2\cdot90\pm0\cdot03 & 253, 304, 363 & 4\cdot37, 3\cdot52, 3\cdot75 & -0\cdot2 \\ 2\cdot90\pm0\cdot02 & 228, 272 & 4\cdot43, 4\cdot14 & 2\cdot6 \\ 5\cdot00\pm0\cdot02 & 228, 272 & 4\cdot43, 4\cdot14 & 2\cdot6 \\ 5\cdot00\pm0\cdot02 & 228, 272 & 4\cdot43, 4\cdot11 & 1\cdot9 \\ 226, 244, 299, 350 & 4\cdot36, 3\cdot65, 3\cdot95 & -0\cdot2 \\ 4,5,6-\operatorname{Trismethylamino-} & 2\cdot02 & 244, 299, 350 & 4\cdot36, 3\cdot65, 3\cdot95 & -0\cdot2 \\ 4,5,6-\operatorname{Trismethylamino-} & 244, 299, 350 & 4\cdot36, 3\cdot65, 3\cdot95 & -0\cdot2 \\ 244, 299, 350 & 4\cdot36, 3\cdot65, 3\cdot95 & -0\cdot2 \\ 244, 299, 350 & 4\cdot36, 3\cdot65, 3\cdot95 & -0\cdot2 \\ 244, 299, 350 & 4\cdot36, 3\cdot65, 3\cdot95 & -0\cdot2 \\ 244, 299, 350 & 4\cdot36, 3\cdot65, 3\cdot95 & -0\cdot2 \\ 244, 299, 350 & 4\cdot36, 3\cdot65, 3\cdot95 & -0\cdot2 \\ 245, 5-\operatorname{Trismethylamino-} & 244, 299, 350 & 4\cdot36, 3\cdot65 & 3\cdot98 & 8\cdot5 \\ 450 & 3\cdot12 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 $			202, 200	110, 0 10	00
		6.12 + 0.01(0.01) ±	216, 276	4·39. 4·53	3 .0
$\begin{array}{ccc} \operatorname{cation} & 6\cdot92\pm0\cdot03(0\cdot01) \ddagger 225, 285 & 4\cdot29, 4\cdot08 & 4\cdot5 \\ 4.6-\operatorname{Bismethylamino-2-intro-cation} & 1\cdot55\pm0\cdot02 & 227, 251, 303, 352 & 4\cdot30, 4\cdot25, 3\cdot91, 4\cdot15 & -0\cdot6 \\ 4.6-\operatorname{Bismethylamino-5-nitro-cation} & 1\cdot55\pm0\cdot02 & 227, 251, 303, 352 & 4\cdot30, 4\cdot25, 3\cdot91, 4\cdot15 & -0\cdot6 \\ 4.6-\operatorname{Bismethylamino-5-nitro-cation} & 1\cdot55\pm0\cdot02 & 227, 251, 303, 352 & 4\cdot30, 4\cdot25, 3\cdot91, 4\cdot15 & -0\cdot6 \\ 4.5-\operatorname{Diamino-1,2-dihydro-2-intimo-1-methyl-cation} & 1\cdot55\pm0\cdot02 & 227, 251, 303, 352 & 4\cdot30, 4\cdot25, 3\cdot91, 4\cdot15 & -0\cdot6 \\ 4.5-\operatorname{Diamino-1,2-dihydro-2-intimo-1-methyl-cation} & 13\cdot66\pm0\cdot05 & 226, 240, 297 & 4\cdot24, 4\cdot07, 3\cdot72 & 7\cdot0 \\ 5.6-\operatorname{Diamino-1,4-dihydro-4-into-227, 278 & 4\cdot25, 3\cdot87 & 14\cdot3 \\ 12\cdot11\pm0\cdot05 & 219, 287 & 4\cdot37, 3\cdot98 & 7\cdot0 \\ 4.6-\operatorname{Dihydroxy-2-methylthio-3-nitro-217, 246, 328 & 4\cdot31, 3\cdot92, 4\cdot01 & -0\cdot2 \\ 5-\operatorname{Dinethylamino-6-methyl-amino-5-nitro-2} & 2\cdot00\pm0\cdot04 & 235, 267, 337 & 4\cdot00, 3\cdot75, 3\cdot96 & 7\cdot0 \\ 4-\operatorname{Dimethylamino-6-methyl-amino-5-nitro-2} & 2\cdot00\pm0\cdot03 & 253, 304, 363 & 4\cdot37, 3\cdot52, 3\cdot75 & -0\cdot2 \\ 5-\operatorname{Formamido-4,6-bismethyl-amino-2} & 5\cdot00\pm0\cdot02 & 228, 272 & 4\cdot43, 4\cdot14 & 2\cdot6 \\ 5-\operatorname{Formamido-4,6-bismethyl-amino-2} & 5\cdot00\pm0\cdot02 & 228, 272 & 4\cdot43, 4\cdot14 & 2\cdot6 \\ 5-\operatorname{Formamido-4,6-bismethyl-amino-2} & 4\cdot17\pm0\cdot01 & 225, 245, 281 & 4\cdot99, 4\cdot43, 4\cdot11 & 1\cdot9 \\ 2-\operatorname{Methyl-4,6-bismethyl-amino-5-nitro-cation} & 3\cdot43\pm0\cdot02 & 244, 299, 350 & 4\cdot36, 3\cdot65, 3\cdot95 & -0\cdot2 \\ 4,5,6-\operatorname{Trismethylamino-} & 227, 275 & 4\cdot36, 3\cdot98 & 8\cdot5 \\ \end{array}$	5-Amino-2-methyl-4,6-bis-			4.33, 3.90	10.3
4,6-Bismethylamino-2- methylthio-5-nitro- cation216, 240, 300, 3604·38, 3·86, 3·73, 4·206·04,6-Bismethylamino-5-nitro- cation1·55 \pm 0·02227, 251, 303, 3524·30, 4·25, 3·91, 4·15 -0.6 4,6-Bismethylamino-5-nitro- cation2·57 \pm 0·03242, 301, 3524·30, 4·25, 3·91, 4·15 -0.6 4,5-Diamino-1,2-dihydro-2- imino-1-methyl- cation13·66 \pm 0·05226, 240, 2974·22, 3·63¶5,6-Diamino-1,4-dihydro-4- imino-1-methyl- cation12·11 \pm 0·05216, 240, 2974·24, 4·07, 3·727·05,6-Dihydroxy-2-methylthio- anion5·09 \pm 0·04207, 227, 260, 2704·35, 4·14, 3·92, 3·887·44,6-Dihydroxy-2-methylthio- 5-nitro- anion2·00 \pm 0·04235, 267, 3374·00, 3·75, 3·967·04-Dimethylamino-6-methyl- amino-5-nitro- cation2·90 \pm 0·03253, 304, 3634·37, 3·52, 3·75 $-0\cdot2$ 5-Formamido-4,6-bismethyl- amino-2-methylthio- cation5·00 \pm 0·02228, 2724·43, 4·142·65-Formamido-4,6-bismethyl- amino-2-methylthio- cation5·00 \pm 0·02228, 2724·43, 4·142·65-Formamido-4,6-bismethyl- amino-2-methylthio- cation5·00 \pm 0·02228, 2724·43, 4·111·92-Methyl-4,6-bismethyl- amino-5-nitro- cation4·17 \pm 0·01225, 245, 2814·29, 4·43, 4·111·92-Methyl-4,6-bismethyl- amino-5-nitro- cation3·43 \pm 0·02244, 299, 3504·36, 3·988·5	methylamino-				
$\begin{array}{c cccc} \mbox{methylfhio-5-nitro-cation} & 1.55 \pm 0.02 & 227, 251, 303, 352 & 4.30, 4.25, 3.91, 4.15 & -0.6 \\ 4,6-Bismethylamino-5-nitro-cation & 2.57 \pm 0.03 & 242, 301, 352 & 4.35, 3.61, 3.87 & -0.2 \\ 4,5-Diamino-1,2-dihydro-2-imino-1,2-dihydro-2-imino-1-methyl-cation & 13.66 \pm 0.05 & 226, 240, 297 & 4.24, 4.07, 3.72 & 7.0 \\ 5,6-Diamino-1,4-dihydro-4-imino-1-methyl-cation & 12.11 \pm 0.05 & 219, 287 & 4.37, 3.98 & 7.0 \\ 4,6-Dihydroxy-2-methylthio-anion & 5.09 \pm 0.04 & 207, 221, 260, 270 & 4.35, 4.14, 3.92, 3.88 & 7.4 \\ 4,6-Dihydroxy-2-methylthio-5-nitro-cation & 2.00 \pm 0.04 & 235, 267, 337 & 4.00, 3.75, 3.96 & 7.0 \\ -Dimethylamino-6-methyl-amino-5-nitro-cation & 2.90 \pm 0.03 & 253, 304, 363 & 4.37, 3.52, 3.75 & -0.2 \\ 5-Formamido-4,6-bismethyl-amino-2-methylthio-cation & 4.17 \pm 0.01 & 225, 245, 281 & 4.29, 4.43, 4.11 & 1.9 \\ 2-Methyl-4,6-bismethyl-amino-5-nitro-cation & 3.43 \pm 0.02 & 244, 299, 350 & 4.36, 3.65, 3.95 & -0.2 \\ 4,5,6-Trismethylamino- & 227, 275 & 4.36, 3.98 & 8.5 \\ \end{array}$		$6.92 \pm 0.03(0.01) \ddagger$			
$\begin{array}{ccc} \operatorname{cation} & 1\cdot55\pm0\cdot02 & 227, 251, 303, 352 & 4\cdot30, 4\cdot25, 3\cdot91, 4\cdot15 & -0\cdot6 \\ 215, 332, 359 & 4\cdot51, 3\cdot89, 4\cdot07 & 5\cdot0 \\ 215, 332, 359 & 4\cdot51, 3\cdot89, 4\cdot07 & 5\cdot0 \\ 242, 301, 352 & 4\cdot35, 3\cdot61, 3\cdot87 & -0\cdot2 \\ 242, 301, 352 & 4\cdot35, 3\cdot61, 3\cdot87 & -0\cdot2 \\ 229, 296 & 4\cdot22, 3\cdot63 & & & \\ \end{array}$			216, 240, 300, 360	4.38, 3.86, 3.73, 4.20	6.0
4.6-Bismethylamino-5-nitro- cation2:57 \pm 0:03215, 332, 3594:51, 3:89, 4:075:04.5-Diamino-1,2-dihydro-2- imino-1-methyl- cation13:66 \pm 0:052242, 301, 3524:35, 3:61, 3:87 -0.2 5.6-Diamino-1,4-dihydro-4- imino-1-methyl- cation13:66 \pm 0:05226, 240, 2974:24, 4:07, 3:727:05.6-Diamino-1,4-dihydro-4- imino-1-methyl- cation12:11 \pm 0:05219, 2874:37, 3:987:04.6-Dihydroxy-2-methylthio- anion5:09 \pm 0:04207, 221, 260, 2704:35, 4:14, 3:92, 3:887:44.6-Dihydroxy-2-methylthio- 5-nitro- anion5:09 \pm 0:04235, 267, 3374:00, 3:75, 3:967:04-Dimethylamino-6-methyl- amino-5-nitro- cation2:90 \pm 0:02253, 304, 3634:37, 3:52, 3:75-0:25-Formamido-4,6-bismethyl- amino-2-methylthio- cation5:00 \pm 0:02228, 2724:43, 4:142:65-Formamido-4,6-bismethyl- amino-2-methylthio- cation4:17 \pm 0:01225, 245, 2814:29, 4:43, 4:111:92-Methyl-4,6-bismethyl- amino-5-nitro- cation3:43 \pm 0:02244, 299, 3504:36, 3:65, 3:95-0:22-Methyl-4,6-bismethyl- amino-5-nitro- cation3:43 \pm 0:02244, 299, 3504:36, 3:65, 3:95-0:22-Methyl-4,6-bismethyl- amino-5-nitro- cation3:43 \pm 0:02244, 299, 3504:36, 3:65, 3:95-0:2225, 245, 2814:29, 3:504:36, 3:65, 3:95-0:2227, 2754:36, 3:688:5		1.55 1 0.09	007 051 000 050	4.20 4.95 2.01 4.15	0.6
$\begin{array}{cccc} {\rm cation} & 2\cdot57\pm0\cdot03 & 242, 301, 352 & 4\cdot35, 3\cdot61, 3\cdot87 & -0\cdot2 \\ {\rm 4,5-Diamino-1,2-dihydro-2-} & 229, 296 & 4\cdot22, 3\cdot63 & \P \\ {\rm cation} & 13\cdot66\pm0\cdot05 & 226, 240, 297 & 4\cdot24, 4\cdot07, 3\cdot72 & 7\cdot0 \\ {\rm 5,6-Diamino-1,4-dihydro-4-} & 222, 278 & 4\cdot25, 3\cdot87 & 14\cdot3 \\ {\rm imino-1-methyl-} & 222, 278 & 4\cdot25, 3\cdot87 & 14\cdot3 \\ {\rm cation} & 12\cdot11\pm0\cdot05 & 219, 287 & 4\cdot37, 3\cdot98 & 7\cdot0 \\ {\rm 4,6-Dihydroxy-2-methylthio-} & 243, 277 & 3\cdot83, 3\cdot96 & 2\cdot6 \\ {\rm anion} & 5\cdot09\pm0\cdot04 & 207, 221, 260, 270 & 4\cdot35, 4\cdot14, 3\cdot92, 3\cdot88 & 7\cdot4 \\ {\rm 4,6-Dihydroxy-2-methylthio-} & 2\cdot00\pm0\cdot04 & 235, 267, 337 & 4\cdot00, 3\cdot75, 3\cdot96 & 7\cdot0 \\ {\rm anion} & 2\cdot00\pm0\cdot04 & 235, 267, 337 & 4\cdot00, 3\cdot75, 3\cdot96 & 7\cdot0 \\ {\rm 4-Dimethylamino-6-methyl-} & 2\cdot90\pm0\cdot03 & 253, 304, 363 & 4\cdot37, 3\cdot52, 3\cdot75 & -0\cdot2 \\ {\rm 5-Formamido-4,6-bismethyl-} & 2\cdot90\pm0\cdot02 & 228, 272 & 4\cdot43, 4\cdot14 & 2\cdot6 \\ {\rm 5-Formamido-4,6-bismethyl-} & 2\cdot90\pm0\cdot02 & 228, 272 & 4\cdot43, 4\cdot14 & 2\cdot6 \\ {\rm 5-Formamido-4,6-bismethyl-} & 2\cdot00\pm0\cdot02 & 228, 272 & 4\cdot43, 4\cdot14 & 2\cdot6 \\ {\rm 5-Formamido-4,6-bismethyl-} & 2\cdot00\pm0\cdot02 & 228, 272 & 4\cdot43, 4\cdot14 & 2\cdot6 \\ {\rm 5-Formamido-4,6-bismethyl-} & 228, 275 & 4\cdot62, 4\cdot00 & 7\cdot0 \\ {\rm amino-2-methylthio-} & 4\cdot17\pm0\cdot01 & 225, 245, 281 & 4\cdot29, 4\cdot43, 4\cdot11 & 1\cdot9 \\ {\rm 2-Methyl-4,6-bismethyl-} & 214, 232, 357 & 4\cdot57, 4\cdot13, 4\cdot15 & 6\cdot0 \\ {\rm amino-5-nitro-} & 244, 299, 350 & 4\cdot36, 3\cdot65, 3\cdot95 & -0\cdot2 \\ {\rm 4,5,6-Trismethylamino-} & 227, 275 & 4\cdot36, 3\cdot98 & 8\cdot5 \\ \end{array}$		1.55 ± 0.02			
$\begin{array}{cccc} 4,5-\text{Diamino-1,2-dihydro-2-} & 229, 296 & 4\cdot22, 3\cdot63 & \P \\ \text{imino-1-methyl-} & 229, 296 & 4\cdot22, 3\cdot63 & \P \\ \text{imino-1-methyl-} & 222, 278 & 4\cdot24, 4\cdot07, 3\cdot72 & 7\cdot0 \\ 5,6-\text{Diamino-1,4-dihydro-4-} & 222, 278 & 4\cdot25, 3\cdot87 & 14\cdot3 \\ \text{imino-1-methyl-} & 222, 278 & 4\cdot25, 3\cdot87 & 14\cdot3 \\ \text{cation} & 12\cdot11 \pm 0\cdot05 & 219, 287 & 4\cdot37, 3\cdot98 & 7\cdot0 \\ 4,6-\text{Dihydroxy-2-methylthio-} & 5\cdot09 \pm 0\cdot04 & 243, 277 & 3\cdot83, 3\cdot96 & 2\cdot6 \\ \text{anion} & 5\cdot09 \pm 0\cdot04 & 207, 221, 260, 270 & 4\cdot35, 4\cdot14, 3\cdot92, 3\cdot88 & 7\cdot4 \\ 4,6-\text{Dihydroxy-2-methylthio-} & 5\cdot09 \pm 0\cdot04 & 235, 267, 337 & 4\cdot00, 3\cdot75, 3\cdot96 & 7\cdot0 \\ \text{anion} & 2\cdot00 \pm 0\cdot04 & 235, 267, 337 & 4\cdot00, 3\cdot75, 3\cdot96 & 7\cdot0 \\ \text{anion-5-nitro-} & 2\cdot90 \pm 0\cdot03 & 253, 304, 363 & 4\cdot37, 3\cdot52, 3\cdot75 & -0\cdot2 \\ \text{anino-cation} & 2\cdot90 \pm 0\cdot03 & 253, 304, 363 & 4\cdot37, 3\cdot52, 3\cdot75 & -0\cdot2 \\ \text{5-Formamido-4, 6-bismethyl-amino-2-methylthio-cation} & 5\cdot00 \pm 0\cdot02 & 228, 272 & 4\cdot43, 4\cdot14 & 2\cdot6 \\ \text{5-Formamido-4, 6-bismethyl-amino-2-methylthio-cation} & 4\cdot17 \pm 0\cdot01 & 225, 245, 281 & 4\cdot29, 4\cdot43, 4\cdot11 & 1\cdot9 \\ 2-\text{Methyl-4,6-bismethyl-amino-5-nitro-cation} & 3\cdot43 \pm 0\cdot02 & 244, 299, 350 & 4\cdot36, 3\cdot65, 3\cdot95 & -0\cdot2 \\ 4,5,6-\text{Trismethylamino-} & 227, 275 & 4\cdot36, 3\cdot98 & 8\cdot5 \\ \end{array}$		2.57 ± 0.03			
$\begin{array}{cccc} \operatorname{imino-1-methyl}^{\text{imino-1-methyl}}_{\text{cation}} & 13\cdot66 \pm 0\cdot05 & 226, 240, 297 & 4\cdot24, 4\cdot07, 3\cdot72 & 7\cdot0 \\ 5,6-\text{Diamino-1,4-dihydro-4-} & 222, 278 & 4\cdot25, 3\cdot87 & 14\cdot3 \\ \operatorname{imino-1-methyl}^{\text{imino-1-methyl}}_{\text{cation}} & 12\cdot11 \pm 0\cdot05 & 219, 287 & 4\cdot37, 3\cdot98 & 7\cdot0 \\ 4,6-\text{Dihydroxy-2-methylthio-} & 5\cdot09 \pm 0\cdot04 & 243, 277 & 3\cdot83, 3\cdot96 & 2\cdot6 \\ \operatorname{anion} & 5\cdot09 \pm 0\cdot04 & 207, 221, 260, 270 & 4\cdot35, 4\cdot14, 3\cdot92, 3\cdot88 & 7\cdot4 \\ 4,6-\text{Dihydroxy-2-methylthio-} & 5\cdot09 \pm 0\cdot04 & 235, 267, 337 & 4\cdot00, 3\cdot75, 3\cdot96 & 7\cdot0 \\ \operatorname{anion} & 2\cdot00 \pm 0\cdot04 & 235, 267, 337 & 4\cdot00, 3\cdot75, 3\cdot96 & 7\cdot0 \\ \operatorname{amino-5-nitro-} & 2\cdot90 \pm 0\cdot03 & 253, 304, 363 & 4\cdot37, 3\cdot52, 3\cdot75 & -0\cdot2 \\ \operatorname{amino-2-methylthio-} & 2\cdot90 \pm 0\cdot02 & 228, 272 & 4\cdot43, 4\cdot14 & 2\cdot6 \\ \operatorname{amino-2-methylthio-} & 5\cdot00 \pm 0\cdot02 & 228, 272 & 4\cdot43, 4\cdot14 & 2\cdot6 \\ \operatorname{2-Formamido-4, 6-bismethyl-} & 5\cdot00 \pm 0\cdot02 & 228, 272 & 4\cdot43, 4\cdot14 & 2\cdot6 \\ \operatorname{2-Formamido-4, 6-bismethyl-} & 2\cdot90 \pm 0\cdot01 & 225, 245, 281 & 4\cdot29, 4\cdot43, 4\cdot11 & 1\cdot9 \\ \operatorname{amino-2-methylthio-} & 4\cdot17 \pm 0\cdot01 & 225, 245, 281 & 4\cdot29, 4\cdot43, 4\cdot11 & 1\cdot9 \\ \operatorname{2-Methyl-4, 6-bismethyl-} & 2^{14}, 2^{32}, 357 & 4\cdot57, 4\cdot13, 4\cdot15 & 6\cdot0 \\ \operatorname{amino-5-nitro-} & 3\cdot43 \pm 0\cdot02 & 244, 299, 350 & 4\cdot36, 3\cdot65, 3\cdot95 & -0\cdot2 \\ \operatorname{4,5,6-Trismethylamino-} & 227, 275 & 4\cdot36, 3\cdot98 & 8\cdot5 \end{array}$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	,	н
$\begin{array}{cccc} \operatorname{imino-1-methyl}^{i} & & & & & & & & & & & & & & & & & & &$	cation	13.66 ± 0.05	226, 240, 297	4·24, 4·07, 3·72	7.0
$\begin{array}{cccc} cation & 12\cdot11\pm0\cdot05 & 219, 287 & 4\cdot37, 3\cdot98 & 7\cdot0 \\ 4.6-Dihydroxy-2-methylthio-anion & 5\cdot09\pm0\cdot04 & 243, 277 & 3\cdot83, 3\cdot96 & 2\cdot6 \\ 5\cdot09\pm0\cdot04 & 207, 221, 260, 270 & 4\cdot35, 4\cdot14, 3\cdot92, 3\cdot88 & 7\cdot4 \\ 4.6-Dihydroxy-2-methylthio-5-nitro-anion & 2\cdot00\pm0\cdot04 & 235, 267, 337 & 4\cdot00, 3\cdot75, 3\cdot96 & 7\cdot0 \\ 4-Dimethylamino-6-methyl-amino-5-nitro-cation & 2\cdot90\pm0\cdot03 & 253, 304, 363 & 4\cdot37, 3\cdot52, 3\cdot75 & -0\cdot2 \\ 5-Formamido-4, 6-bismethyl-amino-2 & 2\cdot90\pm0\cdot02 & 228, 272 & 4\cdot43, 4\cdot14 & 2\cdot6 \\ 5-Formamido-4, 6-bismethyl-amino-2-methylthio-cation & 4\cdot17\pm0\cdot01 & 225, 245, 281 & 4\cdot29, 4\cdot43, 4\cdot11 & 1\cdot9 \\ 2-Methyl-4, 6-bismethyl-amino-5-nitro-cation & 3\cdot43\pm0\cdot02 & 244, 299, 350 & 4\cdot36, 3\cdot65, 3\cdot95 & -0\cdot2 \\ 4,5,6-Trismethylamino- & 227, 275 & 4\cdot36, 3\cdot98 & 8\cdot5 \\ \end{array}$			222, 278	4 ·25, 3 ·87	14.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			010 005		= 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
4,6-Dihydroxy-2-methylthio- 5-nitro- anion2:00 \pm 0:04217, 246, 3284:31, 3:92, 4:01 -0.2 217, 246, 3284:31, 3:92, 4:01 -0.2 3 anion2:00 \pm 0:04235, 267, 3374:00, 3:75, 3:967:04-Dimethylamino-6-methyl- amino-5-nitro- cation2:90 \pm 0:03253, 304, 3634:37, 3:52, 3:75 -0.2 5-Formamido-4,6-bismethyl- amino- cation2:90 \pm 0:02228, 2724:43, 4:142:65-Formamido-4,6-bismethyl- amino- cation5:00 \pm 0:02228, 2724:43, 4:142:65-Formamido-4,6-bismethyl- amino-2-methylthio- cation4:17 \pm 0:01225, 245, 2814:29, 4:43, 4:111:92-Methyl-4,6-bismethyl- amino-5-nitro- cation3:43 \pm 0:02244, 299, 3504:36, 3:65, 3:95 -0.2 4,5,6-Trismethylamino-2:41, 292, 3574:36, 3:988:5					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					• -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			MII, MIO, 0MO	401,002,401	
		$2{\cdot}00\pm0{\cdot}04$	235, 267, 337	4.00, 3.75, 3.96	7.0
$\begin{array}{cccc} {\rm cation} & 2 \cdot 90 \pm 0 \cdot 03 & 253, 304, 363 & 4 \cdot 37, 3 \cdot 52, 3 \cdot 75 & -0 \cdot 2 \\ {\rm 5-Formamido-4,6-bismethyl-amino-} & 228, 264 & 4 \cdot 60, 3 \cdot 78 & 7 \cdot 5 \\ {\rm cation} & 5 \cdot 00 \pm 0 \cdot 02 & 228, 272 & 4 \cdot 43, 4 \cdot 14 & 2 \cdot 6 \\ {\rm 5-Formamido-4,6-bismethyl-amino-2-methylthio-cation} & 4 \cdot 17 \pm 0 \cdot 01 & 225, 245, 281 & 4 \cdot 29, 4 \cdot 43, 4 \cdot 11 & 1 \cdot 9 \\ {\rm 2-Methyl-4,6-bismethyl-amino-5-nitro-cation} & 3 \cdot 43 \pm 0 \cdot 02 & 244, 299, 350 & 4 \cdot 36, 3 \cdot 65, 3 \cdot 95 & -0 \cdot 2 \\ {\rm 4,5,6-Trismethylamino-} & 227, 275 & 4 \cdot 36, 3 \cdot 98 & 8 \cdot 5 \end{array}$	4-Dimethylamino-6-methyl-	—	225, 244, 368	4·41, 4·10, 3·94	5.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c} \text{amino-} \\ \text{cation} & 5\cdot00 \pm 0\cdot02 \\ \text{amino-2-methylthio-} \\ \text{cation} & 4\cdot17 \pm 0\cdot01 \\ \text{amino-2-methylthio-} \\ \text{cation} & 4\cdot17 \pm 0\cdot01 \\ \text{228, 275} & 4\cdot62, 4\cdot00 \\ \text{7}\cdot0 \\ \text{28, 275} & 4\cdot62, 4\cdot00 \\ \text{7}\cdot0 \\ $					
$\begin{array}{cccc} {\rm cation} & 5\cdot00\pm0\cdot02 & 228, 272 & 4\cdot43, 4\cdot14 & 2\cdot6 \\ {\rm 5-Formamido-4,6-bismethyl-amino-2-methylthio-cation} & 4\cdot17\pm0\cdot01 & 225, 245, 281 & 4\cdot29, 4\cdot43, 4\cdot11 & 1\cdot9 \\ {\rm 2-Methyl-4,6-bismethyl-amino-5-nitro-cation} & 3\cdot43\pm0\cdot02 & 244, 299, 350 & 4\cdot36, 3\cdot65, 3\cdot95 & -0\cdot2 \\ {\rm 4,5,6-Trismethylamino-} & 227, 275 & 4\cdot36, 3\cdot98 & 8\cdot5 \end{array}$			228, 264	4.60, 3.78	7.5
		5.00 1 0.09	998 979	4.42 4.14	9.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.00 ± 0.02			
$\begin{array}{cccc} {\rm cation} & 4\cdot17\pm0\cdot01 & 225, 245, 281 & 4\cdot29, 4\cdot43, 4\cdot11 & 1\cdot9 \\ {\rm 2-Methyl-4,6-bismethyl-} & 214, 232, 357 & 4\cdot57, 4\cdot13, 4\cdot15 & 6\cdot0 \\ {\rm amino-5-nitro-} & 214, 232, 357 & 4\cdot57, 4\cdot13, 4\cdot15 & 6\cdot0 \\ {\rm cation} & 3\cdot43\pm0\cdot02 & 244, 299, 350 & 4\cdot36, 3\cdot65, 3\cdot95 & -0\cdot2 \\ {\rm 4,5,6-Trismethylamino-} & 227, 275 & 4\cdot36, 3\cdot98 & 8\cdot5 \end{array}$			220, 210	102, 100	•••
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.17 + 0.01	225, 245, 281	4.29, 4.43, 4.11	1.9
$\begin{array}{c ccccc} amino-5-nitro-\\cation & 3\cdot43\pm0\cdot02 & 244, 299, 350 & 4\cdot36, 3\cdot65, 3\cdot95 & -0\cdot2\\ 4,5,6-Trismethylamino- & 227, 275 & 4\cdot36, 3\cdot98 & 8\cdot5 \end{array}$	2-Methyl-4,6-bismethyl-				6.0
4,5,6-Trismethylamino- 227, 275 4·36, 3·98 8·5	amino-5-nitro-				
		$3 \cdot 43 \pm 0 \cdot 02$			
		6.01 + 0.09			
$\begin{array}{c} \text{cation} \\ \text{ total} \\$		6.01 ± 0.03	228, 230, 280	4.12, 4.12, 4.14	

* Constant determined at 20° spectroscopically (ionic buffer strength of 0.01M) except where otherwise indicated. The methods of A. Albert and E. P. Serjeant ("Ionization Constants of Acids and Bases," Methuen, London, 1962) were used. \dagger Inflexions in italics. \ddagger Potentiometrically at concentration (M). § Species unstable at this pH. ¶ Extinction coefficient determined by extrapolation. ** Constant estimated by analogy with the N-1-methyl isomer (cf. ref. 6). $\dagger\dagger$ Approximate constant only. $\ddagger\ddagger$ See ref. 3.

with lithium aluminium hydride, was a failure. However, when a methylthio-group was introduced to increase ether solubility,¹³ the resulting 5-formamido-4,6-bismethyl-amino-2-methylthiopyrimidine was easily reduced and the crude product was desulphurised to give authentic 4,5,6-trismethylaminopyrimidine (V; R = R' = NHMe). It proved identical with the methylation product above, and condensed with ethyl oxalate to give 5,6,7,8-tetrahydro-5,8-dimethyl-4-methylamino-6,7-dioxopteridine.

¹³ B. R. Baker, R. E. Schaub, and J. P. Joseph, J. Org. Chem., 1954, 19, 638.

In an attempt to avoid the formation of 4,5,6-trismethylaminopyrimidine and in turn force substitution on a nuclear nitrogen atom, 5-amino-4,6-bismethylaminopyrimidine was formylated prior to methylation. However, the formamidopyrimidine (V; R =NHCHO, R' = NHMe) reacted with methyl iodide to give a mixture of the mono- and dimethyl derivatives of 9-methyl-6-methylaminopurine. The n.m.r. spectrum of the first purine obtained under milder conditions showed three methyl signals ($\tau = 5.75, 5.85$,

6.80) and was assigned the structure 7,9-dimethyl-6-methylaminopurinium iodide (VI) by analogy with the quaternary purines made by Pfleiderer and Sagi; 14 it was also obtained directly (but not unambiguously) by methylating 9-methyl-6-methylaminopurine. The n.m.r. spectrum of the second (dimethylated) product contained four methyl signals $(\tau = 5.75, 5.82, 6.20, 6.55)$ and it was therefore 1,6-dihydro-1,7,9-trimethyl-6-methyliminopurinium iodide or its 3,7,9-trimethyl isomer (VII).

2,4,5-Triaminopyrimidine $(pK_a \ 7.63)^{4}$ reacted with methyl iodide to give a strongly basic imine $(pK_a 13.6)$ which must necessarily be its N-1- or N-3-methyl derivative. It was shown to be 4,5-diamino-1,2-dihydro-2-imino-1-methylpyrimidine (VIII; R = NH) by hydrolysis consequent on boiling the free base in water. Ammonia was lost and the oxopyrimidine (VIII; R = O) was identified with authentic material ¹⁵ by comparisons as base, picrate,² and the derived 2,3-dihydro-3,6,7-trimethyl-2-oxopteridine.¹⁶

When the base (VIII; R = NH) was condensed with ethyl glyoxylate hemiacetal in alkali, the pteridine produced underwent Dimroth rearrangement (see below) to give 7-hydroxy-2-methylaminopteridine. Its structure was confirmed by a second synthesis from 4.5-diamino-2-methylaminopyrimidine¹⁷ and the hemiacetal in alkaline solution. The success of this reaction strongly supports the orientation of the hydroxy-group as 7 (not 6) because 7-hydroxypteridines are generally formed in such alkaline condensations whereas their 6-isomers require neutral or even acidic conditions.^{11,18} The 7-hydroxyconfiguration was independently confirmed (Jones's rule)⁶ by the close similarity of the ultraviolet spectrum of the anion to that of the dianion of 2,7-dihydroxypteridine ¹⁹ and by its dissimilarity to that of 2,6-dihydroxypteridine ¹⁹ at the same pH. Dimroth rearrangement must have occurred after rather than before the original condensation to a pteridine, because the imine (VIII; R = NH) was stable under alkaline conditions similar to those used in that condensation.

EXPERIMENTAL

Analyses were done by Dr. J. E. Fildes and her staff. N.m.r. spectra were recorded on a Varian A60 spectrometer. Samples were dissolved in deuterium oxide and chemical shifts measured with respect to 3-trimethylsilyl-1-propanesulphonic acid sodium salt as internal reference.

- W. Pfleiderer and F. Sagi, Annalen, 1964, 673, 78.
 D. J. Brown, J. Appl. Chem., 1955, 5, 358.
 D. J. Brown and S. F. Mason, J., 1956, 3443.

- ¹⁷ F. Bergmann, G. Levin, H. Kwietny-Govrin, and H. Ungar, *Biochim. Biophys. Acta*, 1961, **47**, 1.
 ¹⁸ A. Albert, D. J. Brown, and G. Cheeseman, *J.*, 1952, 1620.
 ¹⁹ A. Albert, J. H. Lister, and C. Pedersen, *J.*, 1956, 4621.

3-Amino-2-formyl-5-hydroxypyrazine.—5-Amino - 1,4 - dihydro - 4 - imino-1-methylpyrimidine hydriodide ² (2.52 g.) and ethyl glyoxylate hemiacetal (2.2 g.) were refluxed in 2N-sodium carbonate (15 ml.) for 30 min. The solution, chilled and acidified to pH 1—2, gave the formylpyrazine (0.47 g.), decomp. ca. 222° (from water), identified with authentic material ³ by mixed m. p., chromatography, and infrared spectroscopy.

5,6-Diamino-1,4-dihydro-4-imino-1-methylpyrimidine (or Tautomer).—4,5,6-Triaminopyrimidine ²⁰ (0.8 g.), methanol (28 ml.), and methyl iodide (10 ml.) were refluxed for 3 hr. Refrigeration gave the *imine hydriodide* (0.66 g.) and evaporation gave a further quantity (0.92 g.). Recrystallised from water and then 50% aqueous ethanol, the hydriodide had m. p. 260° (Found: C, 22.5; H, 3.55; N, 26.2. $C_5H_{10}IN_5$ requires C, 22.5; H, 3.75; N, 26.2%).

4-Amino-1,7-dihydro-1-methyl-7-oxopteridine.—When the above iminopyrimidine hydriodide (2.67 g.) and ethyl glyoxylate hemiacetal (2.2 g.) were shaken in 2N-sodium carbonate (15 ml.) at room temperature, the intermediate ethoxycarbonylmethyleneamino-derivative precipitated. The mixture was heated on a steam-bath for 1 hr. and then chilled. Recrystallisation of the solid from water gave the oxopteridine (1.3 g.), m. p. 345—350° (decomp.) (Found: C, 47.6; H, 4.1; N, 39.5. $C_7H_7N_5O$ requires C, 47.45; H, 4.0; N, 39.55%).

2-Carbamoyl-5-hydroxy-3-methylaminopyrazine.—The above oxopteridine (0.1 g.) was refluxed for 1 hr. in N-sodium hydroxide (1 ml.). Cooled and acidified to pH 2.5, the solution deposited the *pyrazine* (0.06 g.), decomposing at *ca*. 300° after recrystallising from water (Found: C, 42.6; H, 5.05; N, 33.6. $C_6H_8N_4O_2$ requires C, 42.85; H, 4.8; N, 33.35%).

1,4(1,7)-Dihydro-7(4) - hydroxy-1 - methyl-4(7) - oxopteridine. — 5,6 - Diamino-1,4 - dihydro-1methyl-4-oxopyrimidine (2.65 g.)⁵ and ethyl glyoxylate hemiacetal (4 g.) were shaken in a buffer of 5N-acetic acid (4.7 ml.), sodium acetate (4.7 g.), and water (20 ml.) at room temperature for 5 min. The yellow carbethoxymethyleneamino-derivative (3.3 g., m. p. 174—175°, from ethanol) was collected, washed with water and ethanol, and heated on the steam-bath with N-sodium hydroxide (30 ml.) for 30 min. Chilled and adjusted to pH 5.5, the solution deposited 2-carbamoyl-5-hydroxy-3-methylaminopyrazine (0.42 g.) identical with the specimen above. The filtrate was evaporated to dryness *in vacuo* and the residue was triturated with N-hydrochloric acid. The remaining *oxopteridine* (1.2 g.) had m. p. 275—280° (decomp.) after recrystallising from water (Found: C, 47.35; H, 3.45; N, 31.55. C₇H₆N₄O₂ requires C, 47.2; H, 3.4; N, 31.45%).

4-Amino-1,7-dihydro-1,6-dimethyl-7-oxopteridine.—5,6-Diamino-1,4-dihydro-4-imino-1methylpyrimidine hydriodide (0.27 g.), ethyl pyruvate (0.14 g.), and 2N-sodium carbonate (1.5 ml.) were heated on a steam-bath for 15 min. Refrigeration gave the amino-oxopteridine (0.1 g.), m. p. ca. 330° (decomp.) (from water) (Found: C, 50.15; H, 4.8; N, 36.7. $C_8H_9N_5O$ requires C, 50.25; H, 4.75; N, 36.6%).

3,4-Dihydro-4-imino-3-methylpteridine.—The same iminopyrimidine hydriodide (0.6 g.), glyoxal monohydrate (0.26 g.), and ethanolic 0.1N-hydriodic acid (15 ml.) were refluxed for 10 min. under nitrogen. Chilling gave the yellow-green iminopteridine hydriodide (0.42 g.). m. p. 210° (decomp.) (from ethanol) (Found: C, 29.15; H, 2.8; N, 24.45. $C_7H_8IN_5$ requires C, 29.1; H, 2.8; N, 24.25%). Dissolved in warm N-sodium hydroxide (1.5 ml.), the hydriodide (0.15 g.) rearranged rapidly to deposit 4-methylaminopteridine (0.08 g.), m. p. 250—251° (from water), undepressed on admixture with authentic material.⁶

3,4-Dihydro-4-imino-3,6,7-trimethylpteridine.—The iminopyrimidine hydriodide (0.6 g.) and diacetyl (0.3 g.) reacted as above to give the homologous iminopteridine hydriodide (0.48 g.). Recrystallised from ethanol (with concentration) it had m. p. 224—225° (decomp.) (cf. 1,6,7-trimethyl isomer, m. p. 247°) ⁶ (Found: C, 33.75; H, 4.0; N, 21.85. $C_9H_{12}IN_5$ requires C, 34.1; H, 3.8; N, 22.1%).

5-Formamido-4,6-bismethylaminopyrimidine.—5-Amino-4,6-bismethylaminopyrimidine (2.5 g.) was heated on a steam-bath with 90% formic acid (25 ml.) for 1 hr. The residue from evaporation *in vacuo* was dissolved in water (5 ml.). Adjusted to pH 6 with ammonia, it gave the formamidopyrimidine (2.8 g.) which recrystallised from ethyl acetate on concentration and had m. p. 244—245° (efferves.) (Found: C, 46.3; H, 6.3; N, 38.5. $C_7H_{11}N_5O$ requires C, 46.4; H, 6.1; N, 38.65%).

Methylation of 5-Formamido-4,6-bismethylaminopyrimidine.—(a) The formamidopyrimidine $(2 \cdot 0 \text{ g.})$, methanol (50 ml.), and methyl iodide (25 ml.) were heated at 100° for 2 hr. and then concentrated. Chilling gave 7,9-dimethyl-6-methylaminopurinium iodide (1.8 g.), m. p. 260—

²⁰ R. K. Robins, K. J. Dille, C. H. Willits, and B. E. Christensen, J. Amer. Chem. Soc., 1953, 75, 263.

 261° (from ethanol with concentration) (Found: C, 31.55; H, 3.95; N, 22.7. $C_8H_{12}IN_5$ requires C, 31.5; H, 3.95; N, 22.95%).

(b) The formamido-derivative (0.5 g.) was rocked in methyl iodide (6 ml.) at 140° for 3 hr. When triturated with ethanol, the dark oil deposited yellow crystals (0.2 g.) of 1,6 (or 3,6)-dihydro-6-methylimino-1,7,9(or 3,7,9)-trimethylpurinium iodide, m. p. 320° (from ethanol with concentration) (Found: C, 34.0; H, 4.55; I, 39.4; N, 21.8. C₉H₁₄IN₅ requires C, 33.85; H, 4.4; I, 39.75; N, 21.95%).

9-Methyl-6-methylaminopurine.-The above formamidopyrimidine (0.5 g.) was heated at 250° until effervescence ceased (5 min.). The purine (0.34 g.) had m. p. 185-186° (m. p. 190-191°, 193.5-195° by other methods 21,22) (from ethanol) (Found: C, 51.65; H, 5.9; N, 42.9. Calc. for $C_7H_9N_5$: C, 51.5; H, 5.5; N, 42.9%). The purine (0.4 g.) rocked in methyl iodide (6 ml.) at 140° for 1 hr. gave 7,9-dimethyl-6-methylaminopurinium iodide (0.45 g.), m. p. 260°, undepressed on admixture with the product above.

4,5,6-Trismethylaminopyrimidine.—(a) 5-Amino-4,6-bismethylaminopyrimidine^{2,7} (from 10 g. of 4,6-bismethylamino-5-nitropyrimidine) was refluxed for 4 hr. in methanol (80 ml.) and methyl iodide (30 ml.). Evaporation in vacuo gave the trismethylaminopyrimidine hydriodide (7.8 g.), m. p. 191–192° (from ethanol) (Found: C, 28.1; H, 4.65; N, 23.75. C₇H₁₄IN₅ requires C, 28.5; H, 4.8; N, 23.75%). An aqueous solution was adjusted to pH 8. Evaporation, extraction with benzene, and recrystallisation gave the base, m. p. 148-149° (Found: C, 504; H, 8.05; N, 41.9. C₇H₁₈N₅ requires C, 50.3; H, 7.85; N, 41.9%).

(b) 5-Formamido-4,6-bismethylamino-2-methylthiopyrimidine (5.0 g.) in dry pyridine (40 ml.) was added slowly to a refluxing solution of lithium aluminium hydride $(5 \cdot 0 \text{ g.})$ in dry ether (400 ml.). After 2 hr. a further quantity $(2 \cdot 0 g)$ of the hydride was added, and refluxing was continued for 1 hr. Ethyl acetate (40 ml.), water (40 ml.), and 5N-sodium hydroxide (75 ml.) were in turn added *cautiously*. The combined organic layer and the ethyl acetate extracts (3×50 ml.) of the pasty residue were dried $(MgSO_4)$, decolourised (charcoal), and evaporated in vacuo. The heavy residual oil could not be crystallised. It was suspended in water (200 ml.) at 80° and Raney nickel (ca. 25 g.) was added portionwise with stirring. After 1 hr. the filtrate was evaporated and the residue extracted with boiling benzene (100 ml.) to give (on concentration) 4,5,6-trismethylaminopyrimidine (0.8 g.). After two recrystallisations it had m. p. 148° , undepressed on admixture with the above base.

4,6-Dihydroxy-2-methylthiopyrimidine.—4,6-Dihydroxy-2-mercaptopyrimidine²³ (28 g.) in 2.5N-potassium hydroxide (160 ml.) was shaken with methyl iodide (14 ml.) for 40 min. Acidified (pH 2-3) and chilled, the solution deposited the methylthiopyrimidine (10.4 g.), m. p. $\leq 300^{\circ}$ (cf. other methods ²⁴) (Found: C, 37.7; H, 3.6; N, 17.7. Calc. for C₅H₄N₂O₂S: C, 38.0; H, 3.85; N, 17.7%).

4,6-Dihydroxy-2-methylthio-5-nitropyrimidine.—The above methylthiopyrimidine (10 g.) was added over 2 hr. to fuming nitric acid (30 ml., decolourised with urea) at 0°. The red solution poured on to ice gave the nitropyrimidine (10 g.) which was purified by precipitation from cold alkaline solution and had m. p. 223-224° (decomp.) (Found: C, 29.55; H, 2.5; S, 15.4. $C_5H_5N_3O_4S$ requires C, 29.55; H, 2.5; S, 15.75%). It hydrolysed rapidly in hot water to give 5-nitrobarbituric acid, m. p. 176°.25

4,6-Dichloro-2-methylthio-5-nitropyrimidine.-The dihydroxypyrimidine (5.0 g.), phosphoryl chloride (20 ml.), and diethylaniline (6 ml.) were refluxed for 1 hr. After partial evaporation, the residual liquid was poured on ice, to give a grey solid which was filtered off and dried in ether. Evaporation gave the dichloropyrimidine (93%), m. p. 61° (from light petroleum) (Found: C, 24.95; H, 1.3; N, 17.4; S, 13.1. C₅H₃Cl₂N₃O₂S requires C, 25.0; H, 1.25; N, 17.5; S, 13.35%).

4,6-Bismethylamino-2-methylthio-5-nitropyrimidine.—Ethanolic methylamine (20%, 18 ml.) was added slowly at 10° to the above dichloropyrimidine (4.5 g.) in methanol (150 ml.). After the mixture had been stirred for 1 hr., the bismethylaminopyrimidine (3.95 g.) was recrystallised from ethanol. It had m. p. 190° (Found: C, 36.55; H, 4.75; N, 30.7. $C_7H_{11}N_5O_2S$ requires C, 36.65; H, 4.85; N, 30.55%).

²¹ R. K. Robins and H. H. Lin, J. Amer. Chem. Soc., 1957, 79, 490.

 ²² Von H. Goldner and E. Carstens, J. prakt. Chem., 1961, **12**, 242.
 ²³ A. Michael, J. prakt. Chem., 1887, **35**, 449.
 ²⁴ F. E. King and T. J. King, J., 1947, 726; H. L. Wheeler and G. S. Jamieson, Amer. Chem. J., 1904, 32, 342.

²⁵ W. W. Hartman and O. E. Sheppard, Org. Synth., Coll. Vol. II, 1943, p. 440.

5-Formamido-4,6-bismethylamino-2-methylthiopyrimidine.—The above nitro-compound (3.75 g.) was hydrogented at atmospheric pressure in methanol (200 ml.) over Raney nickel. The unstable triamine (2.1 g.) obtained on evaporation was heated at 95° with 90% formic acid (20 ml.) for 1 hr. Evaporation, dissolution in water, and neutralisation to pH 6—7 yielded the formamidopyrimidine (1.5 g.), m. p. 221—222° (from water) (Found: C, 42.1; H, 5.9; N, 30.7. $C_8H_{13}N_5OS$ requires C, 42.3; H, 5.75; N, 30.8%).

9-Methyl-6-methylamino-2-methylthiopurine.—The above formamidopyrimidine (1.0 g.) was heated at 250° for 30 min. The cooled melt was extracted with warm ethanol (25 ml.) and the remaining methylthiopurine (0.58 g.), recrystallised from 50% aqueous ethanol, had m. p. 239° (Found: C, 45.25; H, 5.45; N, 33.45. $C_8H_{11}N_5S$ requires C, 45.95; H, 5.3; N, 33.5%).

2-Methyl-4,6-bismethylamino-5-nitropyrimidine.—4,6-Dichloro-2-methyl-5-nitropyrimidine^{9,10} (10 g.) was methylaminated as for the 2-methylthio-analogue described above. The bismethylamino-compound (8.5 g.) had m. p. 200—201° (from water or ethanol) (Found: C, 43.0; H, 6.0; N, 34.6. $C_7H_{11}N_5O_2$ requires C, 42.65; H, 5.6; N, 35.5%).

5-Amino-2-methyl-4,6-bismethylaminopyrimidine.—The nitro-compound (5.0 g.), hydrogenated at atmospheric pressure in methanol (150 ml.) over Raney nickel, gave (on evaporation) the triamine (3.45 g.), m. p. 145—146° (from benzene) (Found: C, 50.5; H, 7.75; N, 41.65. $C_7H_{13}N_5$ requires C, 50.3; H, 7.85; N, 41.9%). Its hydriodide had m. p. 215—217° (from water) (Found: C, 28.6; H, 4.6; N, 23.65. $C_7H_{14}IN_5$ requires C, 28.5; H, 4.8; N, 23.75%).

4-Dimethylamino-6-methylamino-5-nitropyrimidine.—Ethanolic dimethylamine (30%; 6.5 ml.) was added at 20—30° to a suspension of 4-chloro-6-methylamino-5-nitropyrimidine ¹² (2.74 g.) in ethanol (25 ml.) and the mixture was refluxed for 30 min. Recrystallised from water, the diamine (2.0 g.) had m. p. 96—97° (cf. m. p. 96—97° for material made by another method ¹¹) (Found: C, 42.55; H, 5.7; N, 35.6. Calc. for $C_7H_{11}N_5O_2$: C, 42.65; H, 5.6; N, 35.5%).

4,5-Diamino-1,2-dihydro-2-imino-1-methylpyrimidine (or Tautomer).—2,4,5-Triaminopyrimidine ¹² (5·0 g.), methanol (25 ml.), and methyl iodide (25 ml.) were refluxed for 4 hr. Evaporation and trituration of the residue with ethanol gave the *imine hydriodide* (3·0 g.), m. p. 263— 264° (from 50% aqueous ethanol) (Found: C, 22·5; H, 3·6; N, 26·3. $C_5H_{10}N_5I$ requires C, 22·5; H, 3·75; N, 26·2%). The hydriodide (0·5 g.) was shaken in 10N-sodium hydroxide at 40° for 5 min. The precipitated imino-base, washed with cold ethanol and heated in water (5 ml.) at 100° for 1 hr., gave, on refrigeration and recrystallisation from ethanol (with concentration), 4,5-diamino-1,2-dihydro-1-methyl-2-oxopyrimidine (0·18 g.). It was identified with authentic material ¹⁵ by m. p. and mixed m. p. [*ca.* 245° (decomp.)], chromatography in four solvents, preparation of its picrate ² [m. p. 238—239° (decomp.)] and by conversion into the known ¹⁶ 2,3-dihydro-3,6,7-trimethyl-2-oxopteridine (m. p. *ca.* 250—260° with softening at 190—200°).

4,5-Diamino-2-methylaminopyrimidine.—The crude base ²⁶ gave a picrate, m. p. 215—216° (decomp.) (from ethanol) (Found: C, 36.0; H, 3.4. $C_{11}H_{12}N_8O_7$ requires C, 35.9; H, 3.3%).

4-Amino-5-formamido-2-methylaminopyrimidine.—The above crude triamine (1.0 g.) was heated with 98% formic acid (3 ml.) on a steam-bath for 20 min. The solid from evaporation in vacuo was dissolved in water (5 ml.) and adjustment to pH 9 gave the formamidopyrimidine (0.9 g.), m. p. 202° (from ethanol) (Found: C, 43.4; H, 5.35; N, 41.5. $C_{g}H_{g}N_{5}O$ requires C, 43.1; H, 5.4; N, 41.9%). When the solution above was adjusted to pH 6 instead of pH 9, the formate of the formamidopyrimidine crystallised. It had m. p. 195° (decomp.) (Found: C, 39.4; H, 5.1; N, 32.8. $C_{g}H_{g}N_{5}O, CH_{2}O_{2}$ requires C, 39.4; H, 5.2; N, 32.85%).

2-Methylaminopurine.—The above formamidopyrimidine (0.9 g.) was plunged into a bath at 215°. After a few minutes the mass resolidified, and recrystallisation from water gave the purine (0.5 g.), m. p. 276° (lit.,¹⁷ 278—280°) (Found: N, 47.0. Calc. for $C_6H_7N_5$: N, 47.0%).

7-Hydroxy-2-methylaminopteridine.—(a) 4,5-Diamino-2-methylaminopyrimidine (0.35 g.) and ethyl glyoxylate hemiacetal (0.55 g.) were shaken in water (5 ml.) until the ethoxycarbonyl-methyleneamino-intermediate had precipitated (5 min.). The suspension was added to M-sodium hydrogen carbonate solution (25 ml.) and refluxed 45 min. Acidified to pH 5 and refrigerated, the solution deposited the buff-coloured *pteridine* (0.06 g.) which, from water, had m. p. $\leq 340^{\circ}$ after some sublimation (Found: C, 47.5; H, 4.4; N, 39.3. C₇H₇N₅O requires C, 47.45; H, 4.0; N, 39.55%).

²⁶ A. Albert, D. J. Brown, and G. Cheeseman, *J.*, 1952, 4219.

(b) 4,5-Diamino-1,2-dihydro-2-imino-1-methylpyrimidine hydriodide (0.27 g.) and ethyl glyoxylate hemiacetal (0.22 g.) were shaken in sodium hydroxide (2 ml.) at room temperature for 5 min. and then heated at 100° for 5 min. Isolated as before, the rearranged pteridine (0.09 g.) was indistinguishable from the above.

We thank Professor Adrien Albert for helpful discussions, Dr. J. N. Phillips, C.S.I.R.O. (Canberra) and his staff for n.m.r. measurements, and Mr. C. Arandjelovic, Mr. K. Chamberlain, Mr. D. Light, and Mr. Wynyard for assistance.

DEPARTMENT OF MEDICAL CHEMISTRY, AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA, AUSTRALIA. [Received, November 30th, 1964.]